Всем привет!
Есть много способов получить данные из БД с помощью JPA:
JPQL
JPQL Native Query
HQL
Spring Data JPA Repository
Criteria API
QueryDSL
...
Предположим, нам нужно вернуть набор строк. Задать параметры запроса можно по-разному, а итог будет один - List или другая коллекция (Collection) с набором данных.
Верно? Не совсем)
Если посмотреть на список возвращаемых Spring Data JPA данных https://docs.spring.io/spring-data/jpa/reference/repositories/query-return-types-reference.html#appendix.query.return.types то там можно увидеть много чего интересного. В т.ч. Stream. А вот пример его использования: https://vladmihalcea.com/spring-data-jpa-stream/
Аналогично можно вернуть Stream и из обычного JPA - см. метод getResultStream, вот пример: https://thorben-janssen.com/jpa-2-2s-new-stream-method-and-how-you-should-not-use-it/
Зачем это может быть нужно?
Во-первых это просто красиво... Шучу. Если вы используете Stream в бизнес-логике - то кажется логичным использовать их и при обращении к БД.
А во-вторых: главная особенность стриминга - равномерная выборка данных. И в каждый момент данных в обработке будет одна запись.
Рассмотрим кейс, когда нужно обработать на клиенте миллион записей.
Ремарка: если у вас такой кейс - подумайте, нет ли проблем в архитектуре. Данные лучше обрабатывать на сервере СУБД. Если все же проблем нет - продолжим)
Так вот, какие у нас варианты:
вытащить на клиент миллион записей. Запрос к БД будет один, она выдержит, но с неплохой вероятностью можно убить клиент через Out of Memory.
организовать пагинацию, например, вот так: https://www.baeldung.com/spring-data-jpa-iterate-large-result-sets. Данных на клиенте в моменте не много, по размеру страницы, но запросов к БД ... тысячи.
использовать стримы. Запрос к БД один, данных на клиенте немного. Не обязательно одна запись, но в любом случае немного, детали ниже.
К слову, стриминг по БД с JPA аналогичен перемещению курсора по ResultSet в JDBC. С накладными расходами и плюшкам, которые дает сессия JPA, конечно.
И про объем данных на клиенте. Казалось бы - вытаскиваем записи поштучно. Но если не указать fetch size - объем предварительной выборки - для некоторых СУБД Hibernate вытащит на клиента все данные за раз, и мы вернемся к варианту 1 (((