Обновить

Копипаста в Python редко выглядит как копипаста

В Python-проектах дублирование кода почти никогда не выглядит как «один файл скопировали в другой». Чаще это повторяющиеся структуры, контрольные потоки и оркестрационная логика, которые со временем начинают незаметно расползаться по коду.

Формально всё выглядит по-разному: другие имена, другие константы, чуть иной порядок.
Но архитектурно — это одно и то же решение, просто размноженное.

Я хочу рассказать про CodeClone — инструмент, который я написал для поиска именно такого дублирования. Он не сравнивает строки и токены, а работает на уровне **нормализованного Python AST и графов управления потоком (CFG).

Почему текстовые clone-detectors не работают

Большинство инструментов ищут дублирование через строки, токены или поверхностное сравнение AST. Это отлично ловит copy-paste, но почти бесполезно, когда код:

  • переименован,

  • отформатирован по-другому,

  • слегка отрефакторен,

  • но реализует один и тот же сценарий.

В реальных проектах это часто:

  • одинаковые цепочки валидации,

  • повторяющиеся request/handler пайплайны,

  • скопированная оркестрационная логика,

  • похожие try/except или match/case конструкции.

Идея: сравнивать структуру, а не текст

В CodeClone я пошёл другим путём:

  1. Код парсится в Python AST.

  2. AST нормализуется (имена, константы, аннотации убираются).

  3. Для каждой функции строится Control Flow Graph.

  4. Сравнивается структура CFG, а не исходный код.

Важно: CFG здесь — структурная абстракция, а не модель выполнения. Цель — найти повторяющиеся архитектурные решения, а не доказать семантическую эквивалентность.

Что именно ищется

Функциональные клоны (Type-2)

  • Функции и методы с одинаковой структурой управления:

  • if/else, циклы, try/except, with, match/case (Python 3.10+).

  • Инструмент устойчив к переименованию, форматированию и type hints.

Блочные клоны (Type-3-lite)

  • Повторяющиеся блоки внутри функций: guard-clauses, проверки, orchestration-фрагменты. Используется скользящее окно по CFG-нормализованным инструкциям с жёсткими фильтрами, чтобы снизить шум.

Почему инструмент намере��но консервативный

Один из принципов проекта:

Лучше пропустить клон, чем показать ложный.

CodeClone не использует ML, вероятностные коэффициенты или эвристические скоринги.
Если клон найден — его можно объяснить и воспроизвести. Это важно при использовании в CI.

Baseline и CI

В живых проектах дубликаты уже есть, поэтому CodeClone работает в baseline-режиме:

codeclone . --update-baseline

Baseline коммитится в репозиторий, а в CI используется:

codeclone . --fail-on-new

Существующие дубликаты допускаются, новые — запрещены.
Это работает как архитектурный регресс-чек.

Про Python-версии

AST в Python не полностью стабилен между версиями интерпретатора. Поэтому версия Python фиксируется в baseline и должна совпадать при проверке. Это сделано ради детерминизма и честности результатов.

Итог

CodeClone не заменяет линтеры или type-checkers. Он полезен, если проект живёт долго, код растёт, и хочется вовремя замечать архитектурное дублирование, а не разбираться с его последствиями позже.

Исходники

GitHub: https://github.com/orenlab/codeclone
PyPI: https://pypi.org/project/codeclone/

Теги:
+3
Комментарии1

Публикации