Обновить
2
0
Герман Березин@ceoofmsc

ML-инженер

Отправить сообщение

NLP: когда машины начинают понимать нас (Часть 3)

Уровень сложностиСредний
Время на прочтение13 мин
Охват и читатели2.8K

В этой статье мы продолжим изучение NLP и перейдем к более продвинутым темам, которые являются главными для построения современных приложений и моделей в области обработки естественного языка. А также создадим и обучим модели самостоятельно, используя TensorFlow/Keras и PyTorch.

Читать далее

NLP: когда машины начинают понимать нас (Часть 2)

Уровень сложностиСредний
Время на прочтение8 мин
Охват и читатели2.3K

В прошлой статье мы с вами изучили теоретические основы обработки естественного языка (NLP) и теперь готовы перейти к практике. В мире NLP выбор подходящего языка программирования и инструментов играет ключевую роль в успешной реализации проектов. Одним из наиболее популярных языков для решения задач в этой области является Python. Его простота, читаемость и поддержка мощных библиотек делают его идеальным выбором для разработчиков.

Читать далее

NLP: когда машины начинают понимать нас (Часть 1)

Уровень сложностиПростой
Время на прочтение6 мин
Охват и читатели4.3K

Представьте, что вы можете разговаривать с компьютером так же естественно, как с обычным человеком. Вы задаёте вопросы, получаете ответы, даёте команды - и это всё на вашем родном языке. Именно этим и занимается обработка естественного языка (Natural Language Proccessing, или NLP) - область искусственного интеллекта, которая фокусируется на взаимодействии между компьютерами и людьми с помощью естественного языка.

Цель NLP - научить компьютеры понимать, интерпретировать и генерировать человеческую речь и текст так же, как это делаем мы. Это включает в себя не только распознавание слов, но и понимание их смысла, контекста и эмоций.

Читать далее

VALL-E 2: Нейронные кодировочные языковые модели являются синтезаторами речи с человеческим уровнем в zero-shot

Уровень сложностиПростой
Время на прочтение6 мин
Охват и читатели1.3K

VALL-E 2, последнее достижение в области нейронных кодировочных языковых моделей, которое стало вехой в синтезе речи в zero-shot, достигнув человеческого уровня впервые. Zero-shot - способность модели генерировать речь для голоса, который она не слышала во время обучения. Другими словами, модель может синтезировать речь для нового диктора, основываясь лишь на коротком аудио образце его голоса (prompt).

Основанная на своем предшественнике VALL-E, новая итерация вводит два значительных улучшения: Repetition Aware Sampling и Grouped Code Modeling.

Repetition Aware Sampling (Выборка с учетом повторений) решает проблему зацикливания, с которой сталкивался предыдущий VALL-E. Если модель начинает повторять одни и те же звуки, она автоматически переключается на более точный метод выбора, чтобы избежать "застревания". Grouped Code Modeling (Моделирование групп кодов) - звуковые коды группируются и обрабатываются вместе, как слоги в словах. Это ускоряет синтез речи и позволяет модели лучше учитывать контекст, делая речь более естественной и связной.

Синтез речи из текста (TTS) направлен на генерацию высококачественной речи из текстового ввода с высокой степенью ясности и разборчивости.

Читать далее

Информация

В рейтинге
Не участвует
Откуда
Москва, Москва и Московская обл., Россия
Зарегистрирован
Активность

Специализация

Ученый по данным, ML разработчик
Стажёр
От 40 000 ₽
Python
Английский язык
Базы данных
Docker
Linux
NLP
PyTorch
Deep Learning
TensorFlow
Keras