
С ростом популярности Retrieval-Augmented Generation (RAG), как архитектуры для построения систем генерации контента на основе извлечённых данных, стало очевидно, что односложный подход к выбору источников знаний ограничивает качество результатов. В этой связи особый интерес представляют Hybrid RAG подходы, сочетающие различные методы поиска и представления данных, в целях улучшения полноты, точности и релевантность ответа.
В данной статье я поделюсь своим опытом в реализации Hybrid RAG систем, его архитектуры и практических методов реализации.