Обновить
6
0
Ушенин Константин@kostanew

Пользователь

Отправить сообщение

Глубокое обучение для квантовой химии. Часть II. Предсказание электронной плотности

Уровень сложностиСредний
Время на прочтение9 мин
Охват и читатели1.7K

Всем привет! На связи снова Константин Ушенин из AIRI, и мы продолжаем говорить о глубоком обучении в квантовой химии. В прошлом посте мы немного разобрались в том, что такое молекула, как её представлять в компьютере, и как работают графовые нейронные сети.

В этот же раз я расскажу о том, какие результаты в этой области получила наша команда. Речь пойдет о новой архитектуре для предсказания электронной плотности LAGNet, про которую у нас недавно вышла статья в Journal of Cheminformatics [1]. Мы применили несколько интересных усовершенствований к модели DeepDFT, что позволило в 8 раз снизить требование к объёму необходимых данных и в целом сделало выучивание плотности более эффективным.

Но обо всём по порядку.

Глубокое обучение для квантовой химии. Часть I. Основы

Уровень сложностиСредний
Время на прочтение13 мин
Охват и читатели2.3K

Всем привет! Меня зовут Константин, и я занимаюсь вопросами глубокого обучения в естественных науках в AIRI.

Среди всех достижений глубокого обучения большие языковые модели — пожалуй, самые заметные. Однако помимо работы с текстами у нейросетей есть хорошие перспективы в области биологии, химии, физики и других наук. Можно вспомнить, например, последние Нобелевские премии за архитектуру AlphaFold.

Мы в AIRI активно интересуемся этим прогрессом, в особенности применением глубокого обучения для квантовой химии. Недавно нашу статью про предсказание электронной плотности с помощью нейросетей приняли в Journal of Cheminformatics [1], и мне бы хотелось рассказать, что именно мы там сделали.

Но в первой части своего рассказа я хотел бы сделать введение в тему, в частности, поговорить о том устроены целевые значения для предсказания свойств молекул, и что такое геометрические графовые нейронные сети.

Приятного чтения

Информация

В рейтинге
Не участвует
Откуда
Екатеринбург, Свердловская обл., Россия
Дата рождения
Зарегистрирован
Активность