7 смертных грехов ML-ценообразования

Оптимизацию цен часто упрощают: учимся прогнозировать спрос, зная его при заданных ценах — оптимизируем цены, фиксируем прибыль.
И, казалось бы, данные о продажах в прошлом найти нетрудно, готовых фреймворков с алгоритмами оптимизации — десятки, осталось только немного «поиграть в kaggle», обучив хорошую модель для предсказания спроса и всё готово!
Но на практике всё намного сложнее. Почему модель, идеально прогнозирующая спрос, может предлагать цены, разоряющие бизнес? Может ли максимизация прибыли привести к потере покупателей в долгосрочной перспективе? Почему оптимизатор может считать, что яблоки должны продаваться по цене iPhone? В этой статье разберём эти и прочие «смертные грехи» ценообразования с помощью ML.