Обновить
5
0.2

Пользователь

Отправить сообщение

Устранение дисбаланса классов в PyTorch с помощью WeightedRandomSampler

Уровень сложностиПростой
Время на прочтение15 мин
Охват и читатели10K

Как известно, если в наборе данных для обучения классификатора разные классы представлены в разном объёме, это может привести к ухудшению качества результата.

Одним из методов борьбы с дисбалансом классов является оверсемплинг, т.е. демонстрация классификатору в процессе обучения редких классов с повышенной частотой. В исследовании 2017 года авторы утверждают, что из всех испробованных ими методов овесемплинг показал лучший результат и не привёл к переобучению классификаторов на основе свёрточных нейронных сетей.

Класс WeightedRandomSampler в PyTorch позволяет гибко настраивать оверсемплинг и избавляет от излишнего копирования данных внутри датасета.

Разбираемся, как он работает

Информация

В рейтинге
2 775-й
Зарегистрирован
Активность