All streams
Search
Write a publication
Pull to refresh
18
0
Send message
т. е. можно интерпретировать процесс рассуждения/построения так: говорите «хочу построить основание пешки. Для этого возьму цилиндр, обрежу его снизу плоскостью и оставлю только ту часть, которая является общей для объекта, полученного при вращении параболы вокруг Oz. Далее объединяю это основание с неким объектом, который в свою очередь представляет объединение сферы и эллипсоида». На выходе получаю f(x,y,z), с которым могу решать задачи теплопроводности (нагревание, остывание пешки), механики (скручивание, разрыв) и т. д.
Приведите пример неизмеримого объекта. Точно знаю, что сейчас R-функции используют для раскроя материалов. Понимаете, дело не в том что ТОЛЬКО с помощью метода R-функций. Суть в удобстве и выразительности.

Например вы хотите построить уравнение скажем пешки)

Для этого выберем такие опорные функции:



где 1 — объект, полученный при вращении параболы вокруг Oz,
2 — цилиндр осью которого является ось Oz,
3 — слой, параллельный плоскости xOy,
4 — сфера,
5 — эллипсоид

Легко понять, чтобы получить пешку нужно слепить такой предикат:


В результате получаем:



да, недочет, исправлю. Описание приведено чтобы ознакомить с методом R-функций. Вообще, моя первая статья) спасибо большое за комментарии!
R-функции хороши тем, что мы можем построить аналитическое выражение для любого объекта (в трех или двумерном пространстве). Т.е. проще говоря — можно описывать что угодно. Например, можно знать f(x,y,z) например самолета. А зная функцию можно решать вариационные задачи, при чем точность на приближении описания объекта (например аппроксимировании поверхности как в МКЭ) не теряется

Information

Rating
Does not participate
Location
Харьков, Харьковская обл., Украина
Date of birth
Registered
Activity