All streams
Search
Write a publication
Pull to refresh
0
0
Михаил Жалнин @Mikhail86

Пользователь

Send message

Использование нейронной сети для построения модели оценки заёмщиков в сфере онлайн-микрофинансирования

Reading time9 min
Views11K
В настоящее время для построения скоринговой модели стандартом “де факто” в финансовой отрасли является использование функций логистической регрессии (logit-функций). Суть метода сводится к нахождению такой линейной комбинации начальных данных (предикторов), которая в результате logit-преобразования будет максимально правдоподобно осуществлять предсказания.

Практический недостаток метода — в необходимости длительной подготовки данных для построения модели (около недели работы специалиста). В реальных условиях работы микрофинансовой компании набор данных о заемщиках постоянно меняется, подключаются и отключаются различные дата-провайдеры, сменяются поколения займов — этап подготовки становится узким местом.

Другой недостаток logit-функций связан с их линейностью — влияние каждого отдельного предиктора на конечный результат равномерно на всем множестве значений предиктора.
Модели на базе нейронных сетей лишены этих недостатков, но редко применяются в отрасли — нет надежных методов оценки переобучения, большое влияние “шумящих” значений в исходных данных.

Ниже мы покажем, как с помощью применения различных методов оптимизации модели на базе нейронных сетей позволяют получить лучший результат предсказаний по сравнению с моделями на базе logit-функций.

Читать дальше →

Information

Rating
Does not participate
Location
Кемерово, Кемеровская обл., Россия
Date of birth
Registered
Activity