Swift для дата-сайентиста: быстрое погружение за 2 часа
Google объявил, что TensorFlow переезжает на Swift. Так что отложите все свои дела, выбросьте Python и срочно учите Swift. А язык, надо сказать, местами довольно странный.
Пользователь
Google объявил, что TensorFlow переезжает на Swift. Так что отложите все свои дела, выбросьте Python и срочно учите Swift. А язык, надо сказать, местами довольно странный.
Обычно модели машинного обучения строят в jupyter-ноутбуках, код которых выглядит, мягко говоря, не очень — длинные простыни из лапши выражений и вызовов "на коленке" написанных функций. Понятно, что такой код почти невозможно поддерживать, поэтому каждый проект переписывается чуть ли не с нуля. А о внедрении этого кода в production даже подумать страшно.
Поэтому сегодня представляем на ваш строгий суд превью python'овской библиотеки по работе с датасетами и data science моделями. С ее помощью ваш код на python'е может выглядеть так:
my_dataset.
load('/some/path').
normalize().
resize(shape=(256, 256, 256)).
random_rotate(angle=(-30, 30)).
random_crop(shape=(64, 64, 64))
for i in range(MAX_ITER):
batch = my_dataset.next_batch(BATCH_SIZE, shuffle=True)
# обучаем модель, подавая ей батчи с данными
В этой статье вы узнаете об основных классах и методах, которые помогут сделать ваш код простым, понятным и удобным.
Когда речь заходит про машинное обучение, обычно подразумевают большие объемы данных — миллионы или даже миллиарды транзакций, из которых надо сделать сложный вывод о поведении, интересах или текущем cостоянии пользователя, покупателя или какого-нибудь аппарата (робота, автомобиля, дрона или станка).
Однако в жизни обычного аналитика самой обычной компании много данных встречается нечасто. Скорее даже наоборот — у вас будет мало или очень мало данных — буквально десятки или сотни записей. Но анализ все же нужно провести. Причем не какой попало анализ, а качественный и достоверный.
Зачастую ситуация усугубляется еще и тем, что вы без труда можете нагенерить для каждой записи много признаков (чаще всего добавляют полиномы, разницу с предыдущим значением и значением за прошлый год, one-hot-encoding для категориальных признаков и т.п.). Вот только совсем нелегко разобраться, какие из них действительно полезны, а какие только усложняют модель и увеличивают ошибки вашего прозноза.
Для этого вы можете воспользоваться методами байесовой статистики, например, Automatic Relevance Determination.