All streams
Search
Write a publication
Pull to refresh
74
0
Юрий Тараненко @Scorobey

Разработчик учебных программ

Send message

О классификации методов преобразования Фурье на примерах их программной реализации средствами Python

Reading time7 min
Views31K

Введение


Публикации по методу Фурье условно можно разделить на две группы. Первая группа так называемых познавательных публикаций, например, [1,2].

Вторая группа публикаций касается применения преобразований Фурье в технике, например, при спектральном анализе [3,4].

Ни в коем случае не умоляя достоинства этих групп публикации стоит признать, что без классификации, или хотя бы попытки осуществить такую классификацию, получить системное представление о методе Фурье, по моему мнению, затруднительно.

Задачи публикации


Провести классификацию методов преобразования Фурье на примерах их программной реализации средствами Python. При этом для облегчения чтения использовать формулы только в программном коде с соответствующими пояснениями.

Гармонический анализ и синтез


Гармоническим анализом называют разложение функции f(t), заданной на отрезке [0, Т] в ряд Фурье или в вычислении коэффициентов Фурье по формулам.

Гармоническим синтезом называют получение колебаний сложной формы путем суммирования их гармонических составляющих (гармоник).

Программная реализация
#!/usr/bin/python
# -*- coding: utf-8 -*
from scipy.integrate import quad # модуль для интегрирования
import matplotlib.pyplot as plt # модуль для графиков
import numpy as np # модуль для операций со списками и массивами
T=np.pi; w=2*np.pi/T# период и круговая частота
def func(t):# анализируемая функция
         if t<np.pi:
                  p=np.cos(t)
         else:
                  p=-np.cos(t)
         return p
def func_1(t,k,w):# функция для расчёта коэффициента a[k] 
         if t<np.pi:
                  z=np.cos(t)*np.cos(w*k*t)
         else:
                  z=-np.cos(t)*np.cos(w*k*t)
         return z
def func_2(t,k,w):#функция для расчёта коэффициента b[k] 
         if t<np.pi:
                  y=np.cos(t)*np.sin(w*k*t)
         else:
                  y=-np.cos(t)*np.sin(w*k*t)
         return y
a=[];b=[];c=4;g=[];m=np.arange(0,c,1);q=np.arange(0,2*np.pi,0.01)# подготовка списков для численного анализа
a=[round(2*quad(func_1, 0, T, args=(k,w))[0]/T,3) for k in m]# интеграл для a[k], k -номер гармоники 
b=[round(2*quad(func_2, 0, T, args=(k,w))[0]/T,3) for k in m]# интеграл для b[k], k -номер гармоники
F1=[a[1]*np.cos(w*1*t)+b[1]*np.sin(w*1*t) for t in q]#функции для гармоник
F2=[a[2]*np.cos(w*2*t)+b[2]*np.sin(w*2*t) for t in q]
F3=[a[3]*np.cos(w*3*t)+b[3]*np.sin(w*3*t) for t in q]
plt.figure()
plt.title("Классический гармонический анализ функции \n при t<pi  f(t)=cos(t)  при t>=pi  f(t)=-cos(t)")
plt.plot(q, F1, label='1 гармоника')
plt.plot(q, F2 , label='2 гармоника')
plt.plot(q, F3, label='3 гармоника')
plt.xlabel("Время t")
plt.ylabel("Амплитуда А")
plt.legend(loc='best')
plt.grid(True)
F=np.array(a[0]/2)+np.array([0*t for t in q-1])# подготовка массива для анализа с a[0]/2
for k in np.arange(1,c,1):
         F=F+np.array([a[k]*np.cos(w*k*t)+b[k]*np.sin(w*k*t) for t in q])# вычисление членов ряда Фурье
plt.figure()
P=[func(t) for t in q]
plt.title("Классический гармонический синтез")
plt.plot(q, P, label='f(t)')
plt.plot(q, F, label='F(t)')
plt.xlabel("Время t")
plt.ylabel("f(t),F(t)")
plt.legend(loc='best')
plt.grid(True)
plt.show()

Читать дальше →

Прототипирование в среде Python-Arduino

Reading time5 min
Views24K
Привет, Хабр! Хочу на примерах рассказать о самом простом способе создания чего то сложного. Суть страшного слова «прототипирование» сводится к использованию аналогий или шаблонов в проекте Arduino.

Не хочу пугать длинными словами начинающих пользователей Python-Arduino, по-этому идем сразу по примерам.

Зуммер — генерирует звуковой сигнал тревоги


Зумер [1]. выдает звук, когда снабжен цифровым значением HIGH (то есть, +5 В), которое может быть обеспечено с помощью цифровых выводов Arduino [2].

Однако, вместо того, чтобы выполнять простой цифровой вывод, как было выполнено с датчиком движения реализуем трюки программирования Python для генерации различных звуковых паттернов и создания различных звуковых эффектов.

Соединения




Читать дальше →

Методы разработки потока программного обеспечения датчиков движения, работающих с Arduino

Reading time9 min
Views13K
Привет, Хабр! Хочу предложить реализацию двух подходов разработки программного обеспечения датчика движения, работающего совместно с платой Arduino. Ни датчик движения [1], ни Arduino [2]. в дополнительной рекламе не нуждаются.

Сравним существующие методы программирования с точки зрения простоты и удобства использования. Предлагаем начать статью со знакомства с характеристиками выбранного датчика движения.

Основным датчиком который будем использовать является датчик движения PIR [3].

PIR датчики небольшие, недорогие, потребляют меньше энергии и совместимы с аппаратными платформами, такими как Arduino.

Он использует пару пироэлектрических датчиков, которые обнаруживают инфракрасное излучение. Он имеет радиус действия до 6 метров, что достаточно для проекта.


Кроме того понадобятся светодиоды: зеленый и красный. Шнуры, резисторы и макет: для завершения соединений понадобится пучок проводов и макет. Также понадобятся два резистора на 220 Ом и один 10 кОм.

Следующим составляющим будет плата Arduino: плата Arduino Uno. Для связи платы Arduino с компьютером используем кабель USB.
Читать дальше →

Использование Python для обработки в реальном масштабе времени информации от датчиков, работающих с Arduino

Reading time8 min
Views28K

Постановка задачи


Цифровые и аналоговые датчики, подключенные к Arduino, генерируют большие объёмы информации, которая требует обработки в реальном масштабе времени [1].

В настоящее время данные от Arduino распечатывают из командной строки или отображают в графическом интерфейсе с запаздыванием. Поэтому данные в режиме реального времени и не сохраняются, что делает невозможным их дальнейший анализ.

Данная публикация посвящена программному решению задачи хранения информации от датчиков, работающих с Arduino и её графическому представлению в реальном масштабе времени. В примерах используются широко известными датчиками, такими как потенциометр и датчик движения PIR.

Использование CSV-файлов для хранения данных полученных от датчиков, работающих с Arduino


  • Для записи данных в CSVфайл можно использовать простой листинг:

    import csv
    data = [[1, 2, 3], ['a', 'b', 'c'], ['Python', 'Arduino', 'Programming']]
    with open('example.csv', 'w') as f:
      	w = csv.writer (f)
     	 for row in data:
    		w.writerow(row)
    
Читать дальше →

Простые модели экономической динамики на Python

Reading time5 min
Views9.4K

Введение


В моих публикациях [1,2] экономические задачи рассматривались в статике без учёта времени. В задачах оптимизации экономической динамики анализируются изменение экономических параметров и их взаимосвязей во времени. В моделях экономической динамики время может рассматриваться как дискретное изменяющееся скачком, например, за год. Для описания таких процессов используются разностные уравнения. При непрерывном изменении во времени для описания параметров модели используются дифференциальные уравнения.

Постановка задачи


Для первого знакомства с моделями экономической динамика достаточно рассмотреть две типовые модели. Это паутинообразная модель и модель и модель Калдора в которых и реализованы два указанных подхода к описанию экономической динамики.
Читать дальше →

Решение прямой и двойственной задачи линейного программирования средствами Python

Reading time5 min
Views18K

Введение


Следует отметить, что методы решения задач линейного программирования относятся не к экономике, а к математике и вычислительной технике. При этом экономисту нужно обеспечить максимально комфортные условия диалога с соответствующим программным обеспечением. В свою очередь такие условия могут обеспечивать только динамично развивающиеся и интерактивные среды разработки, имеющие в своём арсенале набор необходимых для решения таких задач библиотек. Одной из каких сред разработки программного обеспечения безусловно является Python.

Постановка задачи


В публикациях [1,2] рассматривались решения прямых задач оптимизации методом линейного программирования и был предложен обоснованный выбор решателя scipy. optimize.

Однако известно [3], что каждой задаче линейного программирования соответствует так называемая выделенная(двойственная)задача. В ней по сравнению с прямой задачей строки переходят в столбцы, неравенства меняют знак, вместо максимума ищется минимум (или наоборот, вместо минимума — максимум). Задача, двойственная к двойственной — эта сама исходная задача.

Решение двойственной задачи очень важно для анализа использования ресурсов. В данной публикации будет доказано, что оптимальные значения целевых функций в исходной и двойственной задачах совпадают (т.е. максимум в исходной задаче совпадает с минимумом в двойственной).

Оптимальные значения стоимости материала и труда будут оцениваться по их вкладу в целевую функцию. В результате будут получены «объективно обусловленные оценки» сырья и рабочей силы, которые не совпадают с рыночными ценами.
Читать дальше →

Игровая модель поведения на рынке двух конкурирующих фирм на Python

Reading time4 min
Views8.3K

Введение


Математическое моделирование в экономике позволяет предупредить возникновения ряда проблем, возникающих в реальной предпринимательской деятельности. Одной из таких проблем у производителей товаров является банкротство.

Поэтому знакомство со стратегиями, позволяющими избежать банкротство в условиях конкуренции, хотя бы на самом начальном уровне безусловно полезно. Кроме того, популярность Python растёт, и реализация задач экономической оптимизации на этом языке так же поспособствует их популярности.

Постановка задачи


Рассмотрим модель поведения на рынке двух конкурирующих фирм, выпускающих аналогичный товар в объемах х и у, пользующийся неограниченным спросом [1]. Построим следующие две функции для цены и издержек.

Листинг построения графиков функций цены и издержек
# -*- coding: utf8 -*-    
import numpy as np
import matplotlib.pyplot as plt
a=10
def f(q): Функция цены от объёма товара
         return a*np.e**(-0.5*q**2)
def h(q): #Функция издержек от объёма товара
         return np.sqrt(q)
plt.figure()
q= np.arange(0, 2.01, 0.1)#Массив значений аргумента
plt.title(r'$y=f(q)$') #Заголовок в формате TeX
plt.ylabel(r'$f(q)$') #Метка по оси y в формате TeX
plt.xlabel(r'$q$') #Метка по оси x в формате TeX
plt.grid(True) #Сетка
plt.plot(q,f(q)) #Построение графика
plt.figure()
plt.title(r'$y=h(q)$') #Заголовок в формате TeX
plt.ylabel(r'$h(q)$') #Метка по оси y в формате TeX
plt.xlabel(r'$q$') #Метка по оси x в формате TeX
plt.grid(True) #Сетка
plt.plot(q,h(q)) #Построение графика
plt.show() #Показать график
Читать дальше →

Визуализация результатов латентно-семантического анализа средствами Python

Reading time7 min
Views9.6K

Постановка задачи


Семантический (смысловой) анализ текста – одна из ключевых проблем как теории создания систем искусственного интеллекта, относящаяся к обработке естественного языка (Natural Language Processing, NLP), так и компьютерной лингвистики. Результаты семантического анализа могут применяться для решения задач в таких областях как, например, психиатрия (для диагностирования больных), политология (предсказание результатов выборов), торговля (анализ востребованности тех или иных товаров на основе комментариев к данному товару), филология (анализ авторских текстов), поисковые системы, системы автоматического перевода. Поисковая машина Google полностью построена на семантическом анализе.

Визуализация результатов семантического анализа является важным этапом его проведения поскольку может обеспечить быстрое и эффективное принятие решений по результатам анализа.

Анализ публикаций в сети по латентно семантическому анализу (LSA) показывает, что визуализация результатов анализа приведена только в двух публикациях [1,2] в виде двух координатного графика семантического пространства с нанесенными координатами слов и документов. Такая визуализация не позволяет однозначно определить группы близких документов и оценить уровень их смысловой связи по принадлежащим документам словам. Хотя в моей публикации под названием “Полный латентно семантический анализ средствами Python” [1] предпринималась попытка использования кластерного анализа результатов латентно семантического анализа, однако были определены только метки кластеров и координаты центроидов для групп слов и документов без визуализации.
Читать дальше →

Решение закрытой транспортной задачи с дополнительными условиями средствами Python

Reading time10 min
Views27K

Постановка задачи


Необходимость решения транспортных задач в связи с территориальной разобщённостью поставщиков и потребителей очевидна. Однако, когда необходимо решить транспортную задачу без дополнительных условий это как правило не является проблемой поскольку такие решения достаточно хорошо обеспечены как теоретически, так и программными средствами.

Решение закрытой транспортной задачи средствами Python с классическим условиями для поставщиков и потребителей товара приведено в моей статье “Решение задач линейного программирования с использованием Python” [1].

Реальная транспортная задача усложняется дополнительными условиями и вот некоторые из них. Ограниченная грузоподъёмность транспорта, не учитываемые задержки при оформлении груза на таможне, приоритеты и паритеты для поставщиков и потребителей. Поэтому решение закрытой транспортной задачи с учётом дополнительных условий и стало целью данной публикации.
Читать дальше →

Тематическое моделирование средствами BigARTM

Reading time11 min
Views21K

Введение


Обратил внимание на перевод публикации под названием «Тематическое моделирование репозиториев на GitHub» [1]. В публикации много теоретических данных и очень хорошо описаны темы, понятия, использование естественных языков и многие другие приложения модели BigARTM.

Однако, обычному пользователю без знаний в области тематического моделирования для практического использования достаточно знаний интерфейса и чёткой последовательности действий при подготовке текстовых исходных данных.Разработке прогамного обеспечения для подготовки текстовых данных и выбору среды разработки и посвящена данная публикация.
Читать дальше →

Вероятностный и информационный анализ результатов измерений на Python

Reading time5 min
Views8.8K

Нет более полезного инструмента для исследования, чем подтверждённая практикой теория.

Зачем нужна информационная теория измерений


В предыдущей публикации [1] мы рассмотрели подбор закона распределения случайной величины по данным статистической выборки и только упомянули об информационном подходе к анализу погрешности измерений. Поэтому продолжим обсуждение этой актуальной темы.

Преимущество информационного подхода к анализу результатов измерений состоит в том, что размер энтропийного интервала неопределенности можно найти для любого закона распределения случайной погрешности. Это исключает «недоразумения» при произвольном выборе значений доверительной вероятности.

Кроме того, по совокупности вероятностных и информационных характеристикам выборки можно более точно определить характер распределения случайной погрешности. Это объясняется обширной базой численных значений таких параметров, как энтропийный коэффициент иконтрэксцесс для различных законов распределения и их суперпозиций.
Читать дальше →

Подбор закона распределения случайной величины по данным статистической выборки средствами Python

Reading time6 min
Views48K

О чём могут «рассказать» законы распределения случайных величин, если научиться их «слушать»


Законы распределения случайных величин наиболее «красноречивы» при статистической обработке результатов измерений. Адекватная оценка результатов измерений возможна лишь в том случае, когда известны правила, определяющие поведение погрешностей измерения. Основу этих правил и составляют законы распределения погрешностей, которые могут быть представлены представлены в дифференциальной (pdf) или интегральной (cdf) формах.

К основным характеристикам законов распределения относятся: наиболее вероятное значение измеряемой величины под названием математическое ожидание (mean); мера рассеивания случайной величины вокруг математического ожидания под названием среднеквадратическое отклонение (std).

Дополнительными характеристиками являются – мера скученности дифференциальной формы закона распределения относительно оси симметрии под названием асимметрия (skew) и мера крутости, огибающей дифференциальной формы под названием эксцесс (kurt). Читатель уже догадался, что приведенные сокращения взяты из библиотек scipy. stats, numpy, которые мы и будем использовать.
Читать дальше →

Моделирование переходных процессов при коммутации электрической цепи средствами Python

Reading time3 min
Views14K


Зачем нужно учитывать переходные процессы


В общем случае в электрической цепи переходные процессы могут возникать, если в цепи имеются индуктивные и емкостные элементы, обладающие способностью накапливать или отдавать энергию магнитного или электрического поля. В момент коммутации, когда начинается переходный процесс, происходит перераспределение энергии между индуктивными, емкостными элементами цепи и внешними источниками энергии, если они подключенными к цепи. При этом могут возникать большие перенапряжения, сверхтоки, электромагнитные колебания, которые способны нарушить работу систем автоматики и других устройств, вплоть до выхода их из строя.

С другой стороны, переходные процессы находят практическое применение, например, в различные рода электронных генераторах, в схемах электроники и автоматики.

В сети много публикаций по данной теме [1,2,3], однако большая их часть содержит описания переходных процессов, основанное на методах аналитического решения соответствующих уравнений. Численные методы используются значительно реже, причём большая часть таких публикаций посвящена описанию метода численного решения дифференциального уравнения.

Учитывая хорошо развитые в библиотеке SciPy численные методы, привожу пример математического моделирования переходных процессов при коммутации в электрических цепях средствами данной библиотеки.
Читать дальше →

Решение задач линейного программирования с использованием Python

Reading time9 min
Views80K

Зачем решать экстремальные задачи


На практике очень часто возникают задачи, для решения которых используются методы оптимизации. В обычной жизни при множественном выборе, например, подарков к новому году мы интуитивно решаем задачу минимальных затрат при заданном качестве покупок.

К сожалению, не всегда можно положиться на интуицию. Допустим Вы сотрудник коммерческой фирмы и отвечаете за рекламу. Затраты на рекламу в месяц не должны превышать 10 000 денежных единиц (д.е). Минута радиорекламы стоит 5 д.е., а телерекламы 90 д.е. Фирма намерена использовать радиорекламу в три раза чаще чем телерекламу. Практика показывает, что 1 минута телерекламы обеспечивает объём продаж в 30 раз больший чем 1 минута радиорекламы.
Читать дальше →

Решение задачи коммивояжёра методом ближайшего соседа на Python

Reading time7 min
Views45K

Быстрый и простой алгоритм требующий модификации


Среди методов решения задачи коммивояжёра метод ближайшего соседа привлекает простотой алгоритма. Метод ближайшего соседа в исходной формулировке заключается в нахождении замкнутой кривой минимальной длины, соединяющей заданный набор точек на плоскости [1]. Моё внимание привлекла наиболее распространённая реализация данного алгоритма в пакете Mathcad, размещённая в сети на ресурсе [2]. Сама реализация не совсем удобна, например, нельзя вывести матрицу расстояний между пунктами или проанализировать альтернативные маршруты.

На ресурсе [2] приведена следующая вполне справедливая критика данного метода. «Маршрут не оптимальный (не самый короткий) и сильно зависит от выбора первого города. Фактически не решена задача коммивояжера, а найдена одна гамильтонова цепь графа». Там же предложен путь некоторого усовершенствования метода ближайшего соседа. «Следующий возможный шаг оптимизации — «развязывание петель» (ликвидация перекрестий). Другое решение — перебор всех городов (вершин графа) в качестве начала маршрута и выбор наикратчайшего из всех маршрутов». Однако реализация последнего предложения не приведена. Учитывая все перечисленные обстоятельства, я решил реализовать приведенный алгоритм на Python и при этом предусмотреть возможность выбора начального пункта по критерию минимальной длины маршрута.
Читать дальше →

Модель ПИД регулятора на Python

Reading time5 min
Views24K

В поисках простой модели ПИД регулятора с объектом


Моделированию работы ПИД регулятора посвящено большое количество публикаций в сети. Лидирует проектирование моделей ПИД регулятора с применением Matlab Simulink [1,2] (134 миллиона ссылок в yandex). Сам процесс создания модели какой-то однообразный. В модель переносят всё новые и новые блоки. Одно движение ручного манипулятора и нате вам ПИД контролер, ещё одно и вот передаточная функция объекта. Соединяешь блоки, настраиваешь параметры, готовишь вычислитель. Да, возможностей много, но как-то слишком всё искусственно. И уже становится совсем непонятным к чему тут дифференциальные уравнения, методы их решения и то операционное исчисление, которым долго морочили голову. Ищу реализацию ПИД в Mathcad, тут ссылок в том же yandex, поменьше, всего то 81 миллион, а математики и формул побольше. Рассматриваю пример ПИД, поставляемый вместе с пакетом Mathcad 14.


В качестве объекта колебательное звено. Много умных объяснений, но в итоге два оператора laplace и invlaplace. Общая передаточная функция имеет в числителе вторую степень оператора, а в знаменателе четвёртую. Чтобы операторы laplace и invlaplace сработали, когда подключены все три составляющих ПИД, находят ещё и корни знаменателя передаточной функции, эти корни комплексно сопряжённые.



Теперь ищу реализацию ПИД на Python. Тихо радовался 97 миллионам результатов, но не долго. О Python 2.7 только применительно к прошивке Arduino на примере ESP32. Но и это переполняет сердце гордостью за Python.

Разочаровавшись в поиске, решил написать модель сам, в меру своих более чем скромных возможностей.
Читать дальше →

Простая модель адаптивного фильтра Калмана средствами Python

Reading time5 min
Views31K

Проблема


Вечная проблема любых измерений их низкая точность. Основных способов повышения точности два, первый состоит в повышении чувствительности к измеряемой величине, однако при этом как правило растёт чувствительность и к неинформативным параметрам, что требует принятия дополнительных мер по их компенсации. Второй способ состоит в статистической обработке многократных измерений, при этом среднеквадратичное отклонение обратно пропорциональна корню квадратному из числа измерений.

Статистические методы повышения точности разнообразны и многочисленны, но и они делятся на пассивные для статических измерений и активные для динамических измерений, когда измеримая величина изменяется во времени. При этом сама измеряемая величина так же, как и помеха являются случайными величинами с изменяющимися дисперсиями.

Адаптивность методов повышения точности динамических измерений следует понимать, как использование прогнозирования значений дисперсий и погрешности для следующего цикла измерений. Такое прогнозирование осуществляется в каждом цикле измерений. Для этой цели применяются фильтры Винера, работающие в частотной области. В отличии от фильтра Винера, фильтр Калмана работает во временной, а не в частотной области. Фильтр Калмана был разработан для многомерных задач, формулировка которых осуществляется в матричной форме. Матричная форма достаточно подробно описана для реализации на Python в статье [1], [2]. Описание работы фильтра Калмана, приведенная в указанных статьях, рассчитана на специалистов в области цифровой фильтрации. Поэтому возникла необходимость рассмотреть работу фильтра Калмана в более простой скалярной форме.
Читать дальше →

От двух камертонов из опытов Лиссажу к одной эллиптической уровнемерной трубке с шагом в столетия и всё на Python

Reading time8 min
Views11K



Картинки из сети, качество желает лучшего, но они достаточно точно отражают суть опыта по визуализации фигур. Зри в корень – основа мудрости поколений.

Немного истории


Ещё в школе на уроках физики я вглядывался в осциллограф, на экране которого, сменяя друг друга, появлялись разные фигуры: сначала простые – линия, парабола, круг, эллипс, потом фигуры становились всё более насыщенные непрерывными волнообразными линиями, напоминающие мне кружева. Автором этого кружевного дива был Жюль Антуан Лиссажу французский физик, член — корреспондент Парижской АН (1879) [1]. Сами фигуры — это замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два гармонических колебания в двух взаимно перпендикулярных направлениях [2]. Думаю, что в те далёкие от современности годы основной заслугой Жюля, кроме конечно накопленных опытом знаний математики и физики, была простая механическая визуализация этих фигур подручными средствами. Захотелось конструировать подобно Жулю максимально просто и наглядно, реализовать его идеи применительно к современной задаче линейных измерений. Но сделать это путём математического моделирования с графической визуализацией его результатов на Python. Но сначала рассмотрим классический вариант [3] построения фигур.
Читать дальше →

Модель колебательного звена в режиме резонансных колебаний на Python

Reading time5 min
Views5.7K

Введение


В статье [1] я в строгом соответствии с общеизвестной теорией колебательных процессов рассмотрел колебательное звено, построив переходные процессы с применением библиотек SymPy и NumPy.

Первым был рассмотрен случай апериодических и свободных затухающих колебаний, инициируемых бесконечным импульсом силы постоянной амплитуды.

Вторым был рассмотрен случай отрицательного демпфирования (который я не прокомментировал). Отрицательное демпфирование можно наблюдать, когда под горизонтально подвешенного в центре на двух пружинах кубике движется лента качающееся его одной его гранью.
Читать дальше →

Модель колебательного звена с применением символьного и численного решений дифференциального уравнения на SymPy и NumPy

Reading time5 min
Views8.4K

Задача


В статья использованы возможности пакета SymPy совместно с пакетом NumPy. Всё сводиться к преобразованию символьных выражений в функции способные работать с другими модулями Python.

Процесс решения дифференциальных уравнений становиться наглядным и хорошо контролируемым на каждом этапе вычислений. Следует отметить, что колебательное звено в разных интерпретациях обсуждается в сетях [1,2]. Например, в [3] приводиться модель колебательного звена с подробным исследованием переходных процессов.

Надеюсь, что подобные исследования колебательного звена на Python найдут своих сторонников.
Читать дальше →

Information

Rating
Does not participate
Location
Днепр, Днепропетровская обл., Украина
Date of birth
Registered
Activity