All streams
Search
Write a publication
Pull to refresh
6
0
Даня Яблочников @Tishiwii

telegram — @tishiwi

Send message

50 оттенков линейной регрессии, или почему всё, что вы знаете об A/B тестах, помещается в одно уравнение

Reading time18 min
Views29K

Всем привет! A/B тестирование уже давно стало стандартом в проверке гипотез и улучшении продуктов в X5. Но, как ни странно, многие из «модных» техник, которые применяются в A/B тестировании, на самом деле, не что иное, как вариации старой доброй линейной регрессии. 

Основная идея здесь проста: правильное добавление новых переменных в модель помогает лучше контролировать внешние факторы и уменьшать шум в данных. Это позволяет точнее оценить эффект от воздействия и объединить разные статистические подходы, которые обычно рассматриваются отдельно. Но почему это работает? Почему всё сводится к тому, что добавление переменных помогает объединить, казалось бы, разрозненные техники? 

Чтобы разобраться в этом, для начала вспомним основы линейной регрессии, после чего перейдём к различным статистическим методам снижения дисперсии и покажем, как они сводятся к линейной регрессии. Затем объединим все техники вместе и на примере покажем, как они работают на практике.

Читать далее

Information

Rating
Does not participate
Registered
Activity

Specialization

Data Analyst
Python
SQL
Machine learning
Algorithms and data structures
Data Analysis
Database
DataMining
Math statistics
NLP
Neural networks