Search
Write a publication
Pull to refresh
51
85.1
Иван Яковлев @d1-d5

Математик, популяризатор и преподаватель

Send message

Невероятные события: насколько корректен размер выборки?

Reading time6 min
Views1.5K

В недавней статье про Закон больших чисел мы оценивали вероятность больших отклонений с помощью неравенства Чебышёва. Для тысячи бросков монетки оно даёт границу 2,5% для отклонения в 100 и более орлов. Мне стало интересно, насколько это близко к правде.

Я написал симуляцию и проверил — сначала на сотне прогонов, потом на тысяче, потом на ста тысячах. Ни одного такого исхода. Реальная вероятность оказалась меньше 5   10 — катастрофически меньше, чем 2,5% из оценки Чебышёва. Именно это стало поводом для написания статьи.

Мы хотим понять, как связано число испытаний, отклонение и вероятность. Если зафиксировать отклонение, какова вероятность его превышения? Если зафиксировать вероятность, каким должно быть допустимое отклонение? И, наконец, если заданы и вероятность, и отклонение, то сколько испытаний нужно провести, чтобы с заданной вероятностью уложиться в эти рамки?

В этой статье мы начнём с эксперимента и дойдём до строгой экспоненциальной оценки, которая работает для любого числа испытаний. По дороге докажем оценку Чернова и выведем частный случай неравенства Хёффдинга и разберём, как они устроены.

Такие оценки широко используются в прикладной математике. Нам важно заранее знать, сколько испытаний провести, чтобы с частота с заданной точностью приблизилась к истинной вероятности события.

Например, для расчёта необходимого числа наблюдений, достаточных чтобы с заданной вероятностью обнаружить статистически значимое отклонение. Зная допустимую вероятность ошибки и величину эффекта, можно заранее понять, сколько данных нужно собрать, чтобы выводы были обоснованными.

Разница между прогнозами, которые дают неравенство Чебышёва и экспоненциальные оценки, может быть колоссальной!

К неравенству Хёффдинга

Закон Больших Чисел: доказательство и суть

Reading time8 min
Views2.6K

Что такое Закон больших чисел — и действительно ли он объясняет, почему вероятности «работают»? В этой статье мы разбираемся с этим шаг за шагом: начинаем с конкретных задач, выводим неравенство Чебышёва, формулируем и доказываем ЗБЧ — аккуратно и строго.

В финале обсуждаем, что ЗБЧ на самом деле утверждает, и почему он не доказывает принцип, на котором построена вся теория. А ещё — подготовим почву для разговора о Центральной Предельной Теореме.

Вперед к ЗБЧ

Кому нужна математика?

Reading time7 min
Views18K

Недавно я прочёл книгу «Кому нужна математика?» Нелли Литвак и Андрея Райгородского — и она меня по-настоящему зацепила. Это короткие, живые рассказы о том, как математика помогает решать важные и неожиданные задачи: от составления расписаний до защиты интернет-трафика. В этом посте я перескажу три истории из книги, которые особенно меня удивили

Читать далее

Как выбрать оффер? Задача о разборчивой невесте и правило 37%

Level of difficultyMedium
Reading time9 min
Views13K

В течение месяца вы проходите собеседования, получаете офферы — и хотите выбрать лучший. Но каждый оффер живёт недолго: если не согласитесь вовремя, к нему уже не вернуться. Как действовать, чтобы выбрать самый лучший?


Это версия классической задачи о разборчивой невесте. У неё есть красивая оптимальная стратегия — правило 37\%. Возможно, вы о нём слышали. Но знаете ли вы, почему оно работает? И как вообще до него додуматься?


Часто алгоритмы — это эвристики, без гарантии оптимальности. Но в этой задаче всё иначе. Мы шаг за шагом переоткроем правило  37 \% и докажем, что он действительно лучший

Недавно я узнал о Теореме о Шансах — более общем подходе, который, неожиданно, работает гораздо проще, чем классическое доказательство. По-русски о ней еще никто не писал

В статье мы разберём эту теорему, выведем правило 37\% и увидим, как в задаче естественно появляется число e — и какой у него смысл на самом деле

Эта задача стоит того, чтобы пройти её до конца. Будет понятно, красиво и интересно

К правилу 37%

Жребий брошен: оптимальная генерация распределений и алгоритм Кнута-Яо

Level of difficultyMedium
Reading time8 min
Views3.1K

Задача
Три айтишника — Маша, Вася и Петя — пошли в поход. После ужина они решают, кто будет мыть посуду. Петя дежурит один, а Маша с Васей — вдвоём. Значит, нужно выбрать Петю с вероятностью ⅓, а Машу с Васей — с вероятностью ⅔. Под рукой — только честная монетка. Как с её помощью устроить такой жребий?

Когда мы обсуждали эту задачу со студентами, они предложили такой способ. Бросим монету дважды: если выпали два орла — дежурит Петя; если один орёл и одна решка — Маша с Васей; если две решки — перебрасываем

Чтобы выбрать дежурного так, в среднем уходит 8⁄3 броска (чуть позже мы это докажем). Можно ли сделать это быстрее? Существует ли алгоритм, для которого ожидаемое число бросков меньше?

Оказывается, можно придумать простой, но неочевидный метод, позволяющий смоделировать событие с вероятностью ⅓ — и в среднем требует не больше двух бросков. Он называется алгоритмом Кнута–Яо

В этой статье мы пройдём весь путь к этому алгоритму. Начнём с базовых методов, поймем, сколько бросков они требуют в среднем, и найдём границу, быстрее которой не может работать никакой алгоритм. А затем построим тот, который этой границы достигает — оптимальный для вероятности ⅓

В финале мы обобщим эту идею: научимся моделировать любую вероятность p от 0 до 1 — и любое дискретное распределение. Заодно познакомимся с важным понятием, называемым энтропией

А в самом конце, как всегда — красивая задача

Читать далее

Важнейшая модель теории вероятностей

Level of difficultyMedium
Reading time14 min
Views15K

Что объединяет частицу в воде, биржевой курс и кота Барсика, бродящего по району в поисках ларька с рыбой?


Всё это — примеры случайного блуждания. Эта простая модель из теории вероятностей помогает описывать самые разные явления: от диффузии молекул до принятия решений и работы алгоритмов. Она кажется интуитивной — но за ней скрывается множество нетривиальных и красивых свойств.

Мы начнём с истории открытия броуновского движения — от наблюдений Роберта Броуна до формулы Альберта Эйнштейна, которая связала наблюдаемое явление с атомной гипотезой. Покажем, как идея случайного движения превратилась из гипотезы в надёжный инструмент научного анализа.

Затем перейдём к математической модели случайных блужданий, разберём, как она устроена и где используется. Научимся с ней работать: найдём среднюю скорость удаления, обсудим задачу о разорении игрока и вернёмся к нашему коту Барсику.

В завершение мы коснёмся неожиданной связи случайных блужданий с электрическими цепями, мыльными плёнками и графами — и покажем, как одна и та же задача может быть решена разными способами.

В финале — красивая задача для самостоятельного решения: её можно решить математически или запрограммировать симуляцию. Выбирайте способ по вкусу.

Читать далее

Что не так? Три парадокса теории вероятностей

Level of difficultyEasy
Reading time8 min
Views40K

Парадокс двух детей Вы встретили на прогулке соседей с сыном. Известно, что у них двое детей. Какова вероятность, что второй — тоже мальчик?

Казалось бы, детская задачка, где нужно просто “вспомнить формулу”, но всё не так однозначно. Если задать этот вопрос прохожему, он, скорее всего, скажет ½. Преподаватель математики, возможно, ответит ⅓. Кто из них прав?

В каком-то смысле, правы оба. Просто каждый представляют себе свой способ, как была получена информация о ребёнке. На самом деле это и есть условие задачи. Только скрытое. 

Вопреки распространенному мнению, теория вероятностей не говорит, возможна ли та или иная ситуация. Прежде чем что-то считать, придется подготовить фундамент — идеализировать наблюдение, понять, что именно мы считаем случайным и построить модель эксперимента. Без этого никакие формулы не помогут.

Парадоксы, о которых пойдет речь, — не логические ошибки. Это ситуации, в которых само понятие вероятности начинает колебаться. Они не ломают теорию, но обнажают, где она требует особенной осторожности. Именно в таких местах теория вероятностей становится особенно странной — и особенно интересной.

В этой статье — три таких истории. В первой один и тот же факт даёт разные вероятности, если по-разному устроено наблюдение. Во второй один и тот же объект может быть “случайным” множеством способов. А в третьей невозможно придумать, как сделать задачу математически строгой.

По дороге мы обсудим, что такое вероятностная модель, геометрическая вероятность и математическое ожидание. А в конце поговорим о том, почему в теории вероятностей у одной задачи могут быть несколько ответов и как с этим жить. А еще, вас ждет красивая задача — бонус для тех, кто дочитает статью до конца.

А пока — вернёмся к соседям с мальчиком. Разберемся, почему эта задачка не так проста, как кажется на первый взгляд.

Читать далее

Information

Rating
202-nd
Location
Москва, Москва и Московская обл., Россия
Date of birth
Registered
Activity