Имеющие дело с прикладными вычислениями знают, какие неприятности может преподносить конечная точность представления вещественных чисел в ЭВМ. Наиболее известные в этом плане проблемы — это решение чувствительных к возмущениям (так называемых, плохо обусловленных) систем линейных уравнений и нахождение собственных значений несимметричных матриц.
Когда речь идет о повседневных арифметических операциях, проблемы с конечной точностью вычислений не выглядят столь пугающими. И наилучшей проверкой того, что результат получен правильно, является сравнение значений полученных на различных точностях.
Если, например, вычисления, полученные на одинарной и удвоенной точностях совпадают, то создается чувство уверенности в результате, по крайней мере с точностью сопоставимой с одинарной. Здесь, я бы хотел привести один интересный пример, демонстрирующий, что даже в сравнительно несложной арифметической задаче подобная устойчивость при переменной точности представления чисел не может служить основанием для такой уверенности.
Когда речь идет о повседневных арифметических операциях, проблемы с конечной точностью вычислений не выглядят столь пугающими. И наилучшей проверкой того, что результат получен правильно, является сравнение значений полученных на различных точностях.
Если, например, вычисления, полученные на одинарной и удвоенной точностях совпадают, то создается чувство уверенности в результате, по крайней мере с точностью сопоставимой с одинарной. Здесь, я бы хотел привести один интересный пример, демонстрирующий, что даже в сравнительно несложной арифметической задаче подобная устойчивость при переменной точности представления чисел не может служить основанием для такой уверенности.