Как стать автором
Поиск
Написать публикацию
Обновить

Развлечения на плоскости Лобачевского

Время на прочтение2 мин
Количество просмотров15K
Евклидова плоскость скучна. Доступное пространство растет всего лишь как квадрат радиуса обзора. По сравнению с ней просторы плоскости Лобачевского гигантски. Но и там есть жизнь!
Сумма углов многоугольника здесь меньше, чем у Евклида и не постоянна, а зависит от площади (от сюда интересное следствие — существуют самые большие треугольники, четырех- пяти- и тп угольники, сумма углов который становится равной нулю). По этому существуют замощения плоскости любыми правильными многоугольниками, если они достаточно велики. В статье про игру Жизнь используется замощение четырехугольниками, в каждой вершине сходятся по пять четырехугольников. Но такие четырехугольники очень велики. Если отказаться от одинаковости многоугольников, можно взять замощение из правильных шести- и семиугольников. Для него можно изготовить наглядную модель плоскости из магнитных шариков «Неокуб».

Многоугольниками будут колечки из шести и семи шариков. Колечки можно соединять между собой. Если они одной ориентации (направлению магнитного поля в кольце), они сцепляются ребрами из двух шариков, если разной — ребром с вершиной. Каждый семиугольник соприкасается с семью шестиугольниками.
семиугольник в окружении шестиугольников
Каждый шестиугольник — с тремя семиугольниками и тремя шестиугольниками.
Три семиугольника и три шестиугольника вокруг шестиугольника
Небольшой фрагмент плоскости начинает собираться в складки, при дальнейшем росте уложить в наше пространство его уже не получается. Но можно вырезать полоску равной ширины (ограниченную не прямыми, а гиперциклами), то ее можно свернуть в спираль.
Компьютер не столь сильно ограничен геометрией реального пространства и погулять по плоскости Лобачевского можно в hyperrogue. Поиграв в эту игру можно почувствовать некоторые особенности гиперболической геометрии. Местный вариант теоремы Пифагора записывается так: ch(с)=ch(a) ch(b) (через ch обозначается гиперболический косинус). При малых значениях длин он превращяется в обычную теорему Пифагора (в этом легко убедится, разложив ch в ряд Тейлора до второй степени). При больших (ch становится почти равным половине экспоненты) — гипотенуза приближается к простой сумме катетов. То есть бежать наперерез большого смысла не имеет и убегать становится проще, чем догонять. Длина окружности стремится к экспоненте радиуса — обходить препятствия получается очень долго.
К сожалению, стратегических игр на плоскости Лобачевского я не нашел. Так как периметр и площадь фигур растет примерно одинакого, контроль большой территории не будет давать серьезного преимущества в обороне границ. А так как площадь круга растет экспоненциально, можно было бы компактно размещать огромные армии. По моему, это сделало бы игру интереснее.
Жаль, что геометрия нашего мира в обозримом масштабе не гиперболическая…
Теги:
Хабы:
Всего голосов 22: ↑19 и ↓3+16
Комментарии11

Публикации

Ближайшие события