Волны — это самое распространённое явление. Физические колебания, звук, свет, радио и рентген, волны вероятности в квантовой механике, гравитационные волны в теории относительности — физика практически состоит из волн. Каждое явление можно изучать отдельно, но есть что-то общее в волнах, универсальное.
Чтобы ухватить это общее предлагаю разбираться в волнах последовательно.
Начнём с вопроса, на первый взгляд не связанного с темой, но ответ на который сразу много прояснит.

Рис. 1. «Две параллельные линии». Канва, браш. Рама.
Перед вами две параллельные линии, с ограниченной областью их просмотра, квадратным окном. Для различия они раскрашены. Вопрос простой: если красная линия это сдвинутая зелёная, то в какую сторону произошел сдвиг?
Варианты:
Представляю вашему вниманию: волна, в самом естественном виде.

Рис. 2. Волна в движении. (Здесь задумана анимация. Но вместо анимации пространственного среза — функция от пространства и времени)
Что изображено? Пространственный профиль.
Какая особенность? Он движется, и при этом не меняется.
В самом общем смысле волна это соединение пространства и времени через распределённое, но единое содержание.
Разумеется, волна — это больше, чем движение профиля, но для демонстрации этого нужны дополнительные пояснения.
В предваряющей статье о разборе круга рассказывалось о том, как понятие производной дополняет определение круга, это не просто постоянство суммы квадратов координат.
Как вам картина (Рис. 1)? Эти две линии напоминают два идущих друг за другом гребня волны. Но правильный ответ на вопрос о направлении сдвига, как ни странно, шестой — «И не только промежуточные». Потому что направление может быть любое, кроме направления вдоль самой линии. Если не допускать отрицательной величины сдвига, то можно, конечно, исключить направления, для которых нужно двигаться в обратную сторону. Но движение по таким направлениям, которые приближены к самой линии больше, чем направление вверх или вправо — тоже вариант.
Например, сдвиг, который складывается из двух шагов вверх и одного шага влево. Сумма коэффициентов при смешивании у шагов вправо и вверх единица, даже если один из коэффициентов отрицательный. Такое, допускающее внутренние варианты, равенство. А с применением комплексных чисел в сумме одно из слагаемых может быть отрицательным, даже если складываются квадраты.
Движение пространственного профиля во времени может быть представлено функцией от двух аргументов, от пространства и времени. Причём, у такой функции значения вдоль диагонали, совпадающей своим направлением с совмещением движения профиля в пространстве и времени, будет сохраняться. Производные такой функции вдоль координаты пространства и вдоль координаты времени будут по абсолютному значению равны, но противоположны по знаку.
Если бы профиль двигался в другом направлении, влево, то производная по пространству осталась бы той же, а производная по времени поменяла бы свой знак, и они стали бы равны.

По сравнению с предыдущим изображением здесь изменено направление
Вторые производные по пространству и по времени будут между собой совпадать. И для функции, сдвиг у которой происходит в противоположную сторону, вторая производная по времени со второй производной по пространству тоже совпадает. В качестве иллюстрации, можно показать, что участок с постоянным ускорением в пространстве выглядит как участок параболы, и если на графике компенсировать постоянную скорость, то относительно точки с этой скоростью график будет симметричен.
Когда говорится о равенстве вторых производных, речь о раздельных направлениях пространства и времени. Направления, совмещающие направления перемещения гребня в пространстве и времени — ведут к неизменности функции, а значит, и нулевым производным вдоль них. Зато, в других совмещениях направлений, в которых пространственное направление противоположно направлению распространения, множитель результата второй производной может доходить до двух.
Если мы возьмём функцию, вторая производная по пространству и вторая производная по времени у которой совпадает, то она позволит существовать не только профилю, движущемуся вправо, или профилю, движущемуся влево, но и функции, которая представляет собой сумму таких профилей. Это и есть дополнительная особенность волны: возможность прохождения через одну точку нескольких профилей в разных направлениях.
Формула волны это равенство второй производной по времени и второй производной по пространству.
— все пространственные координаты.
— направление в пространстве.
— величина проекции координат
на выбранное направление.
Пространственная производная зависит от направления дифференцирования. Общая пространственная производная это вектор, проекция которого говорит о производной в заданном направлении. Вторая производная в прямом и обратном направлении совпадает, общая вторая производная по пространству это число.
Общая вторая производная по пространству это сумма вторых производных по отдельным координатам.
У движущихся навстречу профилей в одномерном пространстве можно отметить два эффекта:
При введении ограничения на частоты стоячих волн не будет. Например, такого, чтобы вся плоскость была нулевой, за счёт того, что встречные профили друг друга полностью гасят, а в следующий момент волны появляются — уже не случится. Здесь в отсутствие реальной составляющей о существовании волны будет говорить мнимая составляющая, и наоборот. Общий результат встречных гармонических волн одинаковой амплитуды будет синусоподобная функция, с общим коэффициентом зависимости от времени вида
.
Для положительных частот вращение во времени идёт в обратном направлении по отношению к вращению в пространстве. Пояснить это можно на примере болта. У болтов правосторонняя резьба, и чтобы закрутить, нужно крутить болт вправо, по часовой стрелке. Но при закручивании гребень волны приближается к шляпке болта, вместе с прикручиваемой деталью. Поэтому, для того чтобы гребень волны отдалялся, вращение нужно производить в противоположную сторону. Отрицательные частоты и в пространстве закручиваются против часовой, и во времени вращение идёт против часовой, это приводит к отрицательному направлению движения в пространстве.

Если мы видим отсутствие мнимой составляющей у среза функции на определенный момент, это значит, что мнимые составляющие противоположных частот погасили друг друга. В следующий промежуток времени один профиль разойдётся на два одинаковых, движущихся в противоположных направлениях, с появлением противоположных мнимых составляющих.
Добавление ограничения частот делает производную по времени характеристикой, включённой в пространственное распределение. Вместо содержания отдельно состояния и отдельно данных о его изменении, всё содержится в функции в пространственном распределении, в комплексных значениях. Ограничение возможных состояний приводит к более тесной взаимосвязи составляющих.
Перемещение профилей можно воспринимать как поток, как размеренную передачу некоторого ресурса на расстояние. Величина потока больше связана с изменением значения функции, чем с самим значением, так как при постоянном значении можно сказать, что передачи не происходит.
Поток в виде постоянной передачи в случае одномерной функции с действительным значением выглядит как
. Но в таком случае значение функции с течением времени выходит за любые рамки.
Если для функции использовать комплексные значения, то постоянная скорость изменения может быть постоянной не сама по себе, а с учётом перпендикулярного движения в качестве изменения фазы, вращения. И тогда чистый поворот в комплексном пространстве будет одновременно и постоянным изменением и изменением ограниченным.
Интеграл по контуру с заданным расстоянием от источника приводит к постоянному значению функции, постоянному суммарному значению производной по времени и постоянному суммарному значению пространственной производной относительно контура, что значит, что поток при расхождении сохраняется.
Интересно, что не смотря на то, что распространение занимает время, при условном смещении общего уровня на
такое распространение выглядит как мгновенное.
Если величина потока из источника будет зависеть от времени нелинейно, эффекта мгновенности не будет, но интегрально поток на постоянном расстоянии будет равен потоку источника в соответствующий момент.
При действительной функции несколько источников постоянного потока при таком интегрировании по любому контуру, включающему источники, дают сумму величин исходящих потоков.
Если заменить постоянно изменяющиеся действительные потоки на постоянно вращающиеся комплексные, то можно заметить, что при одном источнике для постоянного потока постоянной частоты интеграл по контуру постоянного радиуса даст одно и то же значение, с фазой, которая прямо соответствует фазе источника в момент испускания. То есть, интеграл совпадает с величиной испускания, также, как и в случае действительной функции.
Но если центр у контура интегрирования в виде окружности сместить, то у суммарного потока значение уменьшится, кроме векторного сложения значений произойдёт и гашение комплексной амплитуды, из-за размытия фазы.
Для нескольких разнесённых источников с колебаниями в одинаковой фазе потоки будут накладываться так, что интеграл и значений и производных по окружающему контуру всегда будет меньше, чем сумма потоков самих источников.
Конечно, интересный вопрос, куда исчезает поток, и не стоит ли компенсировать это через различие фаз, а то и изменение амплитуд? Нормировку какую-нибудь произвести… Но есть и более важный вопрос. А ничего, что представленное двумерное рассеяние уже не выполняет волновое уравнение?
Похоже, с двумерным распределением потока волн не так всё просто.
Если взять интеграл по окружающему контуру от производной вдоль радиуса, для функции, заданной как распределение волны одной частоты с рассеянием обратно пропорционально расстоянию, получим
Самые простые волны для рассмотрения это плоские. Плоская волна характеризуется тем, что колеблется в пространстве вдоль только одного направления, вдоль всех поперечных ему направлений она постоянна. Для изучения потоков можно разобрать, как накладывается две плоские волны одной частоты разных направлений.
, вместе с самим значением, будет иметь коэффициент, меняющийся как удвоенный косинус вдоль
.
снижена до
. Интеграл у такой производной вдоль
будет колебаться около нуля. Похоже, даже частичная встречность потоков требует развития методов расчёта величины суммарного потока.
После расхождения потоки выглядят точно так же, как выглядели бы без наложения, какими сошлись, такими и разошлись. Так что, само распределение потоков при их наложении можно описать как сохранение суммарной величины потока, но с перераспределением отдельных частей вдоль поперечной координаты, в виде коэффициента, создающего области обнуления и области удвоения. При расхождении это перераспределение возвращает потокам поперечную составляющую.
Рассмотрим ситуацию с двумя точечными источниками волн. Здесь можно предположить, что накладываясь, волны не гасят, а плавно перераспределяют потоки друг друга, изменяют направление распространения, это как мягкая форма такого же перераспределения, которое было в примере с плоскими волнами. На поток будто наложен множитель, оставляющий неизменным суммарное значение по контуру, но производящий перераспределение. И волны в результате даже в некоторой степени концентрируются в общем направлении, подобно лучу лазера, который с расстоянием не рассеивается.
При таком перераспределении суммарная величина потоков должна сохраняться. Наложение колебаний увеличивает удельный поток в месте концентрации, поток переходит туда из мест взаимного гашения. И результат наложения с эффектом концентрации будет превышать результат расчётного наложение волн, рассеянных обратно расстоянию. Но разве амплитуда наложения двух волн может быть больше суммы амплитуд по отдельности? Если рассеяние правильное, то нет.
Правильное — это какое? Суммарно по контуру амплитуда может и не сохраняться.
Самое время разобраться, что именно сохраняется у волны при распространении.

Иллюстрация того, как волны одной частоты от двух источников влияют на максимальную высоту волны в других местах.
Разумеется, при распространении волн сохраняется энергия.
В примере с двумя плоскими волнами энергия двух потоков перераспределяется в энергию двух видов: кинетическую — которая при сложении потоков сложилась не как вектор, а как два числа, и потенциальную, которая в сложенном виде не проявлена, но при расхождении потоков возвращает вклад в поперечное направление.
В гребне волны энергия тоже двух видов: потенциальная, в виде возвышения гребня, и кинетическая, в виде скорости изменения. Скорость входит в энергию как квадрат величины,
. У плоской гармонической волны поток энергии постоянный, поэтому там, где скорость нулевая, уже квадрат отклонения компенсирует недостающую часть энергии, но с коэффициентом, равным квадрату частоты.
Энергия это действительная величина, её можно считать отдельно для каждой комплексной составляющей, или можно сохранить фазу, не удваивая при возведении в квадрат и умножении.
Общая амплитуда входит в энергию как квадрат величины. Значит, при складывании одинаковых функций суммарная энергия возрастёт в четыре раза. При этом, совсем не пересекающиеся функции дают вклад в энергию линейно, энергией суммы будет сумма энергий. Это значит, что когда при совмещении двух функций требуется сложить энергию, принцип совмещения самих функций уже не является суммой. В таком совмещении для сохранения энергии требуется сбалансировать не только пару функций, а одновременно пару функций и пару их вторых производных. Или пару первых производных по времени, но в квадрате.
Производная по пространству это две составляющих вектора, каждая из которых комплексное число.
Если точечные источники с одной фазой излучения выстроить в ряд, то из всех направлений будет выделяться одно. Для излучения сразу всем рядом в других направлениях нужно сдвигать фазу, в линейной зависимости от позиции в ряду, иначе для этих направлений одинаковая излучаемая фаза будет восприниматься вразнобой, и от этого суммарные волны уменьшат свою амплитуду.
Подсчитать как точечный источник излучает гармоническую волну можно двумя способами.
Первый способ.
Сбор волны через сложение профилей для каждого направления полностью согласуется с уравнением волны. От точечного источника излучение волны идёт сразу во все стороны, во всех профилях точка даёт одинаковый вклад. Смещённые в пространстве и времени профили дают вклад обратно в функцию. Так как профиль влияет на соседние направления как проекция, то есть, с растяжением обратно степени сходства направлений – значит, с умножением аргумента гармонической составляющей на степень сонаправленности – то для получения результата суммирования профилей для выбранной частоты нужно проинтегрировать экспоненту с умножением мнимого аргумента на косинус интегрируемого угла.
Существует формула для вычисления этой функции без интеграла.
Сначала нужно выяснить, как выглядит вторая производная по отдельной координате от произвольной функции радиуса.
, в нуле сдвиг увеличивается ещё на
. Амплитуда отношения
стремится к
. В нормализованном для приближения к
виде функция будет:
А сами функции Бесселя по модулю в области нуля даже ещё меньше такого рассеяния.

Фаза функции Бесселя

Нормализованная функция Бесселя с компенсацией рассеяния и сдвигом фазы. Видно падение амплитуды в районе нуля. Комплексные составляющие на отдалении больше 0.5 остаются сходны с косинусом и синусом.
Для отрицательных аргументов функции
в мнимой составляющей можно задать удвоенное значение
, чтобы в паре с ней в области отрицательного аргумента изменить знак у реальной части, чтобы волна на отрицательной стороне не была сопряжённой. При компенсации рассеяния функция Бесселя умножается на корень аргумента, для отрицательных значений это будет мнимое число, производящее сдвиг фазы на четверть оборота. Выбором знака корня можно выбрать положительную или отрицательную сторону сдвига.

Фаза функции Бесселя с компенсацией рассеяния и выбором такого знака у компенсирующего множителя, который выравнивает фазу.
Участок замкнутого контура можно представить состоящим из точечных источников, которые повторяют амплитуду и фазу каждой пришедшей на них гармонической волны от источников изнутри контура. Во внешнем пространстве это будет хорошим приближением волны, за исключением излучения краёв, которое проявляет себя вплоть до добавления оставшихся участков замкнутого контура. В случае замыкания контур сработает как зеркало внутрь, повторитель наружу. Распределение излучения точечных источников должно быть функциями Бесселя, тогда это будет точное представление принципа Гюйгенса.
В дифференциальном уравнении
координата
может быть интерпретирована как величина обратная степени скругления перпендикулярной координаты. Степень скругления, она же степень приближения к центру, будет обозначаться
.
Вторые производные можно представить через значение функции и локальную частоту
используется как проекция координаты
, с условием, чтобы
.
должно быть комплексным. Значит, частота
тоже комплексная.
Выполнение волнового уравнения не подразумевает источников потока. Приходится делить одну функцию на две, в отдельном виде выполняющих уравнение везде, кроме областей перевода потока с одной на другую. Относительно источника это внутренний и внешний уровень.
На внутреннем уровне точечного источника волна также центрально-симметрична, только наоборот, концентрируется со всех сторон в одну точку. Можно подробно представить такую волну: так как суммарно энергия по одному значению радиуса постоянна, то постоянен по модулю и окружающий интеграл квадрата значения, умноженного на квадрат частоты, а значит, если локальная частота не меняется, то амплитуда меняется обратно корню от расстояния.
Общая ситуация при простом сложении двух функций это изменение энергии: возможно как дополнительное усиление в два раза, так и полное гашение. Так как при позитивном сложении энергия должна сохраняться, то при суммировании требуется использовать коэффициенты, причём, комплексные. Коэффициенты срабатывают так, что сколько суммарно энергии было в функциях, столько и осталось, но пропорция здесь — это уже отношение двух комплексных чисел, а значит, включает не только количественное отношение, но и степень расхождения фаз, дополнительную вариацию. При выбранной пропорции смешивания вариация разности фаз может отражаться на вариации усиления амплитуды. Можно отметить, что для отдельных двух плоских волн, если у них различаются направления или частоты, коэффициенты не нужны. Если и направление и частота совпали, коэффициенты зависят от различия фаз. Если у волн присутствуют и другие составляющие, то отдельный вклад плоских волн зависит от общих коэффициентов, они же общие.
Если рассмотреть по порядку: когда точечный источник выпускает концентрическую волну с обоими знаками одного абсолютного значения частоты, мнимые части гасятся, в результате распределение выглядит как затухающий синус с единицей в нуле. При компенсации рассеяния функция становится похожей на косинус, сдвинутый по аргументу на
, и с провалом вокруг нуля. Эта компенсация иллюстративная, её можно в любой момент отменить. Возвращение мнимой части немного компенсирует провал, но волна в результате остаётся сдвинутой по фазе на четверть круга и с повышенной от добавочной компоненты энергией, поэтому применяется коэффициент выравнивания фазы
, коэффициент выравнивания энергии
и коэффициент компенсации различия итоговых амплитуд у пары совпадающих и пары встречных волн одинаковых энергий
.
Волны обоих знаков частоты из центра во все стороны плоскости
Компенсация рассеяния, восстановление мнимой части (левая сторона — внутренняя часть источника)
Возвращение фазы
Величина относительного смещения амплитуды. Видно, что без иллюстративной компенсации рассеяния фаза при прохождении точки сдвигается на четверть круга.
Можно рассмотреть волну в контексте изменения размерности. В одномерном случае всё просто — если посреди пространства есть точка перехода, в ней переключаются уровни. На плоскости относительно такой точки надо рассматривать концентрические волны. Они, в дополнение к концентрическому рассеянию, обратному расстоянию, для сохранения баланса энергии усилены на корень от расстояния. Такое усиление ближе определённого расстояния срабатывает как ослабление. Но эффект от балансировки энергии на этом не заканчивается, это ослабление вблизи перехода усиливается дополнительно, при этом меняется не только амплитуда, но и сдвигается фаза.
При переходе через точку фаза проворачивается на четверть круга. А это значит, что если отследить моменты, когда встречные волны различаются на четверть круга, то получим следующее. Разница в четверть имеет направление — сдвинута прямая волна относительно обратной или наоборот. Противоположные варианты вдоль радиуса чередуются. Но при переходе через точку очерёдность переключается. Как будто добавилось пространство, причём, размер изменения пространства имеет обратную зависимость от частоты, прямую зависимость от длины волны. Для произвольных волн это выглядит как обмен мнимой и реальной составляющей, с изменением знака для одного из направлений обмена.
Совмещение противоположных частот требует перебалансировки энергии, значит в профильном представлении у встречных концентрических волн присутствуют общие компоненты. Вывод: ясно, что концентрические волны это не плоские, а плоские не концентрические, возможно, стоит поискать и другие типы волн, промежуточные к этим двум видам. «И не только промежуточные».
В уравнении
вдоль дополнительной пространственной координаты можно пустить поток выбранной частоты, наложить условие сохранения частоты на производную по времени, а затем посмотреть, какой множитель можно применить в этих условиях к пространственному распределению. Результатом будет не просто коэффициент, обозначающий поворот волны в пространстве, а все допустимые перераспределения. Распределённый коэффициент будет служить для исходной функции огибающей.
, тогда можно переписать его так:
.
Координаты
и
— похоже, координаты для разделения внутренней и внешней энергии. Если задать
, то координата
перестанет влиять на волновое уравнение, пространство и время станут равноправны, за исключением присутствия модулируемой волны.
Только, при решении уравнения Шредингера
— это исходная функция, а
— результат решения. Обратная зависимость невозможна в рамках задачи.
Альтернативный вид уравнения Шрёдингера:
можно свести к квадрату производной первой степени. Уравнение Шредингера оперирует функцией — огибающей к волне, а значит, индикатором степени перехода энергии в потенциальную.
Преобразование Фурье основано на том, что интеграл произведения двух гармонических функций не равен нулю только если их частоты в сумме дают ноль. Два аргумента в интеграле работают вместе, один внутри интеграла проходит пространство, а второй является внешним аргументом, срабатывает как детектор амплитуды для выбранной частоты.
Преобразование переводит функцию из пространственного представления в частотное. При втором применении может перевести обратно в пространственное, только частоты поменяют свой знак, функция развернётся по аргументу, и потребуется нормировочный коэффициент
для каждого применения. Суммарной энергией для всей функции можно считать сумму раздельных по комплексным составляющим интегралов квадрата функции. Эта величина при преобразовании Фурье не меняется. Дополнительный общий коэффициент при преобразовании переходит в такой же коэффициент. Произведение двух функций переходит в их свёртку. Свертка переходит в произведение.
Гауссиана — особенная функция.
С гауссианой при преобразовании Фурье всё просто — когда функцию сужаешь, результат её преобразования расширяется, общая амплитуда, для сохранения энергии, уменьшается. Соответственно, при расширении функции результат преобразования, наоборот, сужается, и его общая амплитуда при этом растёт.
Степень закручивания фазы на пике будет половиной от произведения величин отдельных сдвигов, форма линии одной фазы в фазовом пространстве — гипербола. Преобразование Фурье от сдвинутой гауссианы можно представить плавным поворотом положения пика на четверть круга в фазовом пространстве, со сдвигом общей комплексной фазы, в соответствии пересекаемым при этом гиперболам.
Все функции, раскладываемые на гауссианы, можно подвергать плавному преобразованию Фурье. Для этого придётся различать фазу как множитель и фазу как проявление сдвигов гауссиан. Первая при повороте не меняется, а вторая, пропорционально произведению сдвигов, меняется на противоположную.
Если гауссиану умножать на экспоненту, то это будет эквивалентно её сдвигу и умножению на коэффициент. Если умножать на гармоническую функцию, это тоже будет эквивалентно сдвигу и умножению на коэффициент, который уже сам будет как гауссиана от частоты. Но тогда и сдвиг имеет мнимую компоненту.
в зависимости от
.
Для того чтобы интеграл гауссианы привести к единице есть два способа: поменять общую амплитуду, поделив на
, либо умножить аргумент на
, что будет выглядеть как домножение квадрата аргумента на
без деления на
.
при этом можно выбирать любое независимое от
значение.
Преобразование Фурье от функции Бесселя имеет интересное аналитическое представление
В продолжение, мнимая часть решения уравнения Бесселя, функция Неймана, преобразуется в ту же функцию, с изменённым знаком под корнем.
. И что за волны были бы, если бы центральная точка была бы зеркалом, имеющим постоянное значение? А, ну да, если волны концентрические, то это — они и есть.

Преобразование Фурье функций
и
имеет такое же распределение, как они сами.
Можно заметить, что встречные волны влияют на первую производную функции так, что в ней остаётся только разница этих волн. А вторая производная не теряет, а складывает соответствующие величины, по Пифагору. Общую вторую производную можно выразить через две первые производные, соответствующих базисным направлениям, а величина гашения будет добавлена отдельно.
Чтобы явно задать пространственные составляющие этой величины можно пересечь по две плоских волны для каждого базисного направления, и она даже будет похожа на вектор. Но у вектора все проекции на любой базис согласованы, а здесь распределение по координатам может иметь отдельное значение для каждого направления. Так же как в профильном представлении волны в каждой точке для каждого направления даётся отдельное значение функции, так и здесь для каждого направления разделение величины на вдоль него и поперёк своё.
Впрочем, эта величина выражает прежде всего то, как задана потенциальная энергия, а поэтому представляет собой характеристику огибающей. Огибающая не такое простое понятие — как видно из разбора наложения плоских волн, она может даже менять частоту результата. Если разбирать детально, то нужно учесть, что у огибающей может быть и своя огибающая, значит, придётся разбирать, как несколько последовательных или равноправных огибающих выражаются в одном описании локальных изменений. Сложение двух функций тоже можно рассмотреть как операцию с огибающими.
Тёмная сторона волны представляется мне циклическим потоком внутри каждого отдельного места, энергия вложена, но на приём-передачу не идёт. Но зато она идёт на изменение формы огибающей, а это значит, что может являться вкладом, который забирает не тот, кто положил — а значит, всё равно, в каком-то смысле, передачей.
При добавлении третьего измерения в профильном представлении в координате направления размерность станет на единицу больше.
Но изменится не только это. Для плоской волны фронт в пространстве уже действительно становится плоскостью, и на ней можно дополнительно выбрать направление колебания, появится поляризация. Это приводит к делению одной волны на две составляющие, по одной на каждое базисное направление, перпендикулярное к направлению распространения.
Причём, у каждой части не только своя амплитуда, но и фаза — парная волна может повторять в мнимой составляющей реальную, а в реальной мнимую, с изменением знака для одного из направлений. Для таких волн оценку энергии можно делать исходя только из реальных составляющих. Конечно, парная фаза может и просто совпадать с исходной. А может быть так, что в парной составляющей будет нулевая амплитуда, что делает добавление поляризации похожим на возвращение сопряжённых волн — те похожим образом гасят поперечные колебания в комплексном пространстве. Но деление на две составляющих даёт явное развитие по сравнению с волнами на плоскости.
Из-за такой поляризации значение у пространственного распределения волны становится вектором. Дать общее пространственное направление у вклада два профиля могут только если направления их распространения перпендикулярны этому общему направлению. Иначе вклад профиля вместе с отличием от перпендикуляра уменьшается, а вклад в другие направления, в степени сходства с общим перпендикуляром, увеличивается. Получается, чем более сходны направления у значения и распространения, тем меньше вклад.
Очень подозрительно, когда значение функции похоже на всё что угодно, только не на направление распространения.
Поделить волну на две части можно и по-другому.
Волновое уравнение — это равенство вторых производных по пространству и по времени, а в трёхмерном пространстве уже для первых производных по пространству и времени можно обозначить выражение равенства, но — только для разделённых между собой полей.
У таких полей для каждого их всех трёх базисных пространственных направлений задано своё значение. Производная по времени одного поля одной составляющей будет пространственной производной другого поля во втором направлении от составляющей третьего направления. А так как таких соответствий два, то одно значение делится «на двоих», пропорция подбирается на месте, и для одного из направлений изменён знак. От второго поля к первому такая же зависимость, только, тоже, изменён знак. Не сложно правильно расставить знаки, самосогласованных вариантов — как вариантов вращения, всего два.
Будем разбираться как связаны эти два представления. Сравним количество локальных характеристик. В профильном представлении итоговое пространственное значение это три числа, поляризация умножает на два, итого шесть. В полевом представлении по три действительных составляющих на два поля, итого составляющих тоже шесть. Совпадает, можно разбираться дальше.
Для этого надо разобраться в векторном произведении двух векторов. В нём нет ничего сложного, как и в произведении двух комплексных чисел, амплитуду можно подсчитать отдельно, фазу — или уже направление — отдельно. Амплитуда, разумеется, является произведением, только добавится множитель, равный косинусу отличия угла между векторами от прямого. А вот направление у результата имеет две особенности. Первая особенность — что результат перпендикулярен двум исходным направлениям. А вторая особенность — что, так как таких перпендикулярных направлений два, выбор зависит от последовательности аргументов умножения. У базисных векторов в пространстве есть порядок, один из двух вариантов, и векторное умножение можно считать операцией, сохраняющей этот порядок.
Произведение двух векторов можно представить определителем матрицы. Матрица — вектор, составляющие которого — тоже вектора, одинаковой размерности. Определитель матрицы — это величина объёма параллелепипеда, составленного из составляющих матрицу векторов. Но если из трёх трёхмерных векторов один вектор имеет в составе не величины, а три вектора от базиса, то определитель станет тоже вектором, это и будет векторное произведение. В такой математике, в которой самая сложная операция — вычисления объема параллелепипеда, нет ничего сложного. Но если первый аргумент умножения будет содержать вместо вектора оператор производной по базису, определитель матрицы превращается в ротор.
один из векторов превратили бы в производную:
, то у нас получился бы индикатор степени вращения значения функции вдоль плоскости. Стало бы ясно, как вектор сдвигается вверх при смене координат вправо, и как вектор сдвигается влево при смене координат вверх, и, из-за линейности на малых расстояниях, в любых линейных комбинациях этих направлений тоже. Получилась одна скорость поворота на все направления смены координат.
В объёме всё точно так же, только результат не число, а вектор. Значит, ротор — это тоже индикатор вращения. Вот кто бы знал. Казалось бы, волны и вращение — какая может быть связь? Придётся разбираться и в этом.
Рассмотрим поворот на плоскости. У плоских волн выполнить поворот просто — надо притормозить волну в прямом направлении, умножив на коэффициент
и разогнать в перпендикулярном направлении, умножив на
. Это перемещает вклад выделенной частоты профиля в профиль другого направления той же частоты, больше ничего.
Для концентрических волн поворот тоже возможен. Чтобы не нарушать концентрическую форму, его нужно выполнить в профильном представлении как добавление смещения у профиля, по направлению движения, с линейной зависимостью от направления. Если сдвиг фазы будет одиночно кратен обороту направления, тогда профили противоположных направлений будут сходиться в центре в противофазе, а это говорит о постоянном значении, и значит, зеркале в точке схода. Если там будет зеркало, возможности сконцентрировать весь фронт в одной точке и выкинуть на другой уровень уже не будет.
Определим значение профиля и проинтегрируем, чтобы получить значение функции вдоль одного направления.
.
График функции
.
Распределение амплитуды.
Мнимая составляющая
Распределение является решением уравнения Бесселя, как соответствия общей второй производной, взятой как сумма вторых производных по радиальному и тангенсальному направлениям — при единичной частоте самому значению функции, взятому с минусом.

Иллюстрация границы фаз. Распределение со временем вращается.
При разделении координат на радиус и направление
При рассмотрении аналогии со сложением двух плоских волн можно сделать вывод: кручёная концентрическая волна в процессе пересчёта волны из до-потенциальной в после-потенциальную, с выделением огибающей, сталкивается сама с собой и идёт в новом направлении.
У закрученной концентрической волны, так же как было с обычной концентрической волной, можно восстановить мнимую составляющую, функцию
, являющуюся линейно-независимым решением того же уравнения. Распределение на плоскости, с зависимостью фазы от направления, состоит из таких же колец, только сдвинутых вдоль радиуса. Результат соединения зависит от направления вращения и заданной фазы. Однообразно соединять можно двумя способами, в зависимости от знака мнимой части.
Но отдельно реальная и мнимая составляющие выглядят как спираль. Если у
поменять знак, направленность спирали изменится на противоположную. Направление вращения во времени сохранится.
Отдельно
и
не производят переброса энергии через центр, так как каждая является своим отражением в центре, вдоль радиуса имеет нули и является стоячей волной, кружащейся вокруг центра. Но при соединении вместе, с образованием спирали, нули пропадают, и в центре, так же как было при совмещении частей у не кручёной волны, будет переброс, с зависимостью направления переброса от знака мнимой части. Если, конечно, не считать, что кроме вращения ничего не происходит — а наблюдая за крутящейся спиралью можно подумать и так.
Интересно, как такое распределение, движение которого во времени выглядит как вращение результата в пространстве, выглядит в профильном представлении? Может быть, так же как у повёрнутой концентрической волны — со сдвигом, пропорциональным направлению — только, мнимая часть по каким-то причинам не гасится? Это говорит о том, что при учёте стоков и источников профильное представление будет расширено — например, разделением в пространстве областей для вкладов встречных профилей.
Для функции от нескольких координат производная это функция, которая показывает, как меняется исходная функция вдоль каждого из направлений этих координат. Получается, сколько координат, столько значений — то есть, это вектор. Чтобы получить эту векторную функцию, нужна функция от функции, то есть, оператор. Обозначается как
, градиент. Вектора, чтобы отличать их от скаляров, будут обозначаться заглавными буквами.
Если мы на плоскости возьмём две функции — по одной на координату, то производная будет иметь четыре значения — с делением на два по тому, от какой функции берётся производная, и с делением на два, по какой координате. Среди этих значений — два значения будут взяты по своим координатам, а два значения по противоположным. Для векторных функций на плоскости можно выделить две производных, состоящих из сумм этих значений.
Обе характеристики весьма информативны. Если бы векторная функция на плоскости обозначала направление движения, то ненулевой ротор говорил бы о тенденции ходить кругами. Ненулевая дивергенция говорила бы о том, что количество идущих не постоянно. Можно ясно представить, как элементы массы движутся, и движение спровоцировано двумя способами: либо в каком-то месте элементы добавляются и требуют распределения, вплоть до места, где их обратно забирают, либо происходит хождение кругами. Либо и то и другое вместе.
Ротор показывает степень изменения направления перемещения, и такой поворот это вовсе не следствие включённости элемента в поток распределения, это всегда противодействие такому потоку. А дивергенция показывает как распределён по пространству источник, из которого приходит то, что движется по векторному направлению значения функции.
У функции, полученной градиентом, движения элементов согласованы и нет тенденций кружить — ротор любого градиента будет нулевой. Ротор убирает все признаки источника, почему-то даже у результата, дивергенция от ротора ноль. Ротор для пространства удобней обозначать
, а дивергенцию
. Можно подсчитать ротор ротора — степень эффекта, когда сама тенденция кружить имеет тенденцию кружить на другом уровне.
— Лапласиан, показывает степень пространственной изогнутости, в виде суммы вторых производных по базисным координатам. Другими словами, общая вторая производная. Если лапласиан равен градиенту дивергенции, то ротор ротора нулевой. Так же как на плоскости: если умноженная на значение функции сумма вторых производных равна сумме квадратов первых производных, то «тёмной» части в волне нет.
— расчёт источника векторного произведения приводит к разнице двух скалярных произведений вектора и ротора другого вектора в различном порядке.
В пространстве для волны, представленной функциями
и
выполняется
, такую, что будет выполняться соотношение
и
каждую на две части.
отделится градиент одного скалярного поля, а в
отделится градиент другого скалярного поля, связаны через производную по времени. Так как ротор градиента это ноль, на
это не окажет влияния. Но скалярное поле в
отделяется так, что будет выполнять условие, что его производная по времени равна дивергенции оставшегося
.
— функция для учёта источника волны, степень отклонения от волнового уравнения.
Если проследить за тем, что соответствует источнику поля, которое является векторным произведением полей
Сама функция
это волновое излучение, источник которого распределён в виде
:
и
есть связь, которая имеет простое представление:
и
не прямая можно показать и более наглядно. Опосредованность заключается в возможности существования промежуточного поля
, которое добавляет вклад в изменения со временем
, через вихревую форму распределения в пространстве.
, в нём распределением
по всему пространству мгновенно задаётся величина заряда. Но можно заметить, что связь является опосредованной через дивергенцию. Обратная связь позволяет такое распределение поля, в котором конкретные значения смещены, а величина смещения распределена так, что не даёт вклада при вычислении дивергенции. А значит, обратное влияние заряда на поле не обязательно мгновенное.
Изменение распределения заряда может мгновенно изменять одну часть распределения, но при этом будет менять и другую часть, которая полностью отменяет влияние до тех пор, пока до тех мест не дойдёт сигнал об изменениях, а когда это будет — совсем другое вопрос. Может вообще не дойти, если отменят. То есть, даже просто поле
из-за опосредованной связи с зарядом можно разделить на безвихревое поле мгновенного распространения и компенсирующее всю мгновенность вихревое поле.
Чтобы выяснить, как связаны три различных представления волны, нужно рассмотреть связи их компонентов. Профильное представление содержит комплексные числа, количество которых для отражения поляризации расширено до двух. Представление через поля имеет по два поля, по три действительных компоненты для каждой пространственной точки. Для промежуточного представления, в котором так же как у профильного для выделенного направления и сдвига задаётся значение, которое представлено векторным произведением полей, состав может быть дополнен характеристиками, дающими возможность их восстановления. В рамках плоскости, перпендикулярной к произведению, в качестве поляризации даётся направление
, без указания модуля. И дополнительно — скалярные характеристики
и
.
Количество компонент: полевое представление:
, промежуточное представление:
, волновое представление:
. Количество компонент промежуточного представления легко довести до шести, включив все дополнительные характеристики. Для того, чтобы в профильном представлении компонент стало шесть, поляризацию нужно расширить, допустить третье измерение — поляризацию вдоль распространения.
Здесь и заключается тонкая грань между представлениями. В профильном представлении третье направление поляризации считается характеристикой источника, а не поля. Если в поле сохраняется поляризация вдоль направления распространения, это значит, что действие источника ещё не прекратилось, профили не разошлись. А с другой стороны, что, жалко что ли добавить третью компоненту? Да не жалко. Пусть летит волна, одна из компонент которой вдоль направления движения — значит, в каком то смысле, вдоль времени.
В целом, получилось интересное поле — характеризующееся шестикомпонентным числом, совмещающим три комплексных числа, или два вектора — способов разделения на компоненты несколько. Но в промежуточном представлении вектор совпадает с направлением движения, а значит, количество скалярных компонент не три, а одна. Похоже, для чистых волн без связи с источником, их действительно только четыре. Так что, вопрос количества компонент поляризации — это вопрос сохранения связи волны и её источника. На связь уходит как минимум две компоненты из шести.
Рассматривая сток/источник посреди спирали можно сделать вывод, что источники могут быть разные: один вид испускает во все стороны волны, соответствующие значению в центре, другой вид имеет нулевое значение в центре, а волны противоположных направлений имеют противоположные фазы. Да ещё и вращаться можно. Если говорить о соответствующем стоке, он тоже выполняет свою функцию: перевод энергии на другой уровень точно так же не даёт волнам встречных профилей зайти на общее пространство.
Два источника, отправляющие волны на встречу друг другу, могут рассчитывать на два варианта событий: на пространственное наложение встречных волн, с компенсацией потока энергии, или на нахождение между ними стока, который проведёт волне смену пространства, забрав энергию.
Волны задаются распределением источников, а сами источники имеют правила распределения, включая правила движения и реакции на приходящие волны. В целом, статья про волны закончена, осталось небольшое исследование возможных распределений источников и совмещения волн и источников вместе.
Распределение заряда и распространение волны может представлено в различных пространствах, для соотнесения пересчитываемых между собой через свёртку. При размытии функции результат получается свёрткой с профилем размытия. Преобразование Фурье заменяет свертку двух функций на произведение значений для одинаковых частот. Но у размытия есть и обратная операция: наведение чёткости — свёртка с обратным для исходного профилем. Обращение профиля достаточно простое действие, если нет частот с нулевой амплитудой. Когда есть два пространственных распределения: заряда и волны, и одно из них размыто, то можно произвести наведение чёткости. То что было размытым — станет чётким, а вот тому, что было обычным, придётся стать сверх-чётким. Что, вполне ожидаемо, позволяет появиться повсеместному ненулевому заполнению, исчезающему при размытии.
Преобразование Фурье от гауссианы
, знак у обоих функций может остаться одинаковым. А второе, что при
можно подобрать такой общий коэффициент для обоих сторон, при котором преобразование Фурье от действительной функции даст функцию с исключительно мнимыми значениями. Здесь нужно обратить внимание, что при прохождении
через ноль функция как бы выворачивается наизнанку. А у гауссианы, у которой в
абсолютная величина мнимой части больше абсолютной величины реальной — тоже происходит выворачивание, по уровню, и энергия для такой функции при интегрировании перестаёт сходится.

График функции
, это гауссиана при 

И её преобразование Фурье,
. Отличатся знаком мнимой части.
При противоположных значениях
правила соответствия знака противоположны, и если абсолютное значение мнимой части больше абсолютного значения реальной, то для положительной величины мнимой части и для отрицательной правила тоже будут противоположны. Значит, есть четыре правила, при прохождении по кругу они последовательно меняются. Без меняющихся правил схема знаков будет выглядеть как край ленты Мёбиуса: при переключении на противоположную сторону — два равнозначных варианта.
— символ неопределённости знака, участвующий как множитель с зависимостью от
. В самом простом виде он повторяет минус, если
отрицательное число.

График функции
, это гауссиана по второй формуле при том же 

И её преобразования Фурье,
.
Распределение источника может быть точечным, может быть гауссианой, а может быть расширенной гауссианой, с единичной амплитудой по всему простраству, из-за распределения фазы дающее единичный интеграл.
Реальная часть интеграла от расширенной гауссианы. Похожа на ступеньку, соответствующую точечному источнику.
Диаграмма интеграла расширенной гауссианы в комплексной плоскости. Пример перемещения из одного пункта в другой при постоянной скорости, без резких изменений направления и без ограничений по времени.
Квадрат коэффициента можно представить в виде суммы реальной и мнимой составляющей.
Что у коэффициента
больше по абсолютному значению, мнимая часть или реальная, определяется только знаком величины
.
не получится перейти через границу по энергии, изменение
пойдёт по гиперболе, не пересекающей диагональ.
Преобразование Фурье сохраняет энергию функции — каждая разделённая по области аргумента часть функции содержит одинаковую энергию до и после преобразования. При суммировании частей функции энергия зависит от их пересечения. В исходной функции части поделены по аргументу. Результат преобразования из-за различия частот также не содержит влияния частей на энергию других. Но и при плавном преобразовании Фурье каждая часть перераспределяется так, что вместе с преобразованием других частей наложение происходит без изменения энергии функции.
Рассмотрим, какое влияние на энергию оказывает изменение коэффициента
.
Норма интеграла позволит выводить энергию без отношения к расходящемуся интегралу как к исключительному случаю.
они будут одинаковы, в других случаях у них может быть четыре комбинации. Это два в степени количества бинарных характеристик, но с учётом, что общий знак влияет на линейность.
Фигура кардиоиды — это проявление механизма, когда один единичный круг вращается вокруг второго единичного круга, зацепившись как шестерёнка. Видимо, это ещё и волновой механизм. Для построения кардиоиды нужно сложить два единичных вектора, только один из них нужно поделить пополам: одна половина будет постоянного направления, а угол направления другой будет удвоенный относительно угла второго вектора.

Несколько уравнений, задающих кардиоиду выбранного размера:
, но и сумма корней имеет короткое обозначение.
,
, то при построении графика в зависимости от
из кардиоиды функция превращается в две окружности:


Знак функции при отрицательной реальной части
определяется тем, учитывали ли мы дополнительную бинарную координату — знак величины
— при задании изначальной функции, или задали функцию только для одного её значения, а для другого знак можно обратить.
Если знаки у правой и левой части первого слагаемого не совпадают, то направление кардиоиды вдоль горизонтали меняется, значение функции становится мнимым, и кроме того, при переходе через
будет меняться знак. График по координатам
будет двумя окружностями, расположенных в вертикальном порядке, и у них будет смена знака по вертикали. Смена знака по горизонтали тоже будет, но её можно убрать так же, как можно было добавить в предыдущем случае.
Если вдруг
перестанут быть бинарными значениями, и станет верным
, тогда и реальная и мнимая часть будут иметь одинаковое распределение — круги, повёрнутые на восьмую часть оборота. То есть, фазовое вращение
распределяется на пространственное и фазовое вращение результата, каждое с половинной скоростью. Пространственное вращение — так ещё и в обратном направлении, в отличие от
.
Второе слагаемое энергии зависит от одного действительного числа и график в координатах
представляет собой гиперболу с мнимым значением для положительного аргумента, реальным для отрицательного, и зависимостью знака результата от
.


Деление на
превращает сумму исходных составляющих в реальную составляющую, а разницу в мнимую. При таких поворотах сумма обеих составляющих результата соответствует мнимой части исходного числа.
Энергию можно расписать немного шире.
и добавления множителя
, знаковые множители
и
как будто поменялись местами. Пока они одинаковые это ничего не значит.
Преобразование Фурье гауссианы в аспекте преобразования энергии можно записать как
Преобразование Фурье служит методом пересчёта движущегося профиля в статичные колебания, образующих движение только совместным действием. Одно такое колебание выделенной частоты не различается в пространстве по амплитуде и не различается по пространству и по времени иначе, чем по стабильно меняющейся фазе. С одной стороны, энергия должна сохраняться, так как это свойство смены представления одного и того же процесса. Можно даже попробовать источники, со всем их процессом изменений включить в систему рассмотрения с другого ракурса. Но с другой стороны, дополнительные преобразования проявляются внутри преобразования Фурье как дополнительные характеристики, и здесь кое что не ясно — они задают сохранение энергии, или подчиняются ему?
Можно запутаться, но я, вспомнив принцип болтика, понял: к чему прицепился — то и не двигается. То есть, вопрос взаимосвязи функции и энергии зависит от того, кто спрашивает: физик или математик. И физик, который исходит из того, что энергия сохраняется, бывает не прав — так как этим отсекает передачу её в ещё неизвестных направлениях. Не смотря на то, что действительно, что сохраняется — то и энергия. Математик может разобраться, каковы условия сохранения энергии. Но и в математике есть принципиальные недостатки: можно незаметно для себя всё слишком упростить. Это видно на примере задачки про линии. Только физика может напомнить, что практика важнее математики. Физика открыта новому, поэтому часто движет математику. Математика же принципиально не может разделить автоматическое упрощение и непрактичность.
Отличие энергии, использованной для определения энергии волны, от энергии, полученной через покомпонентное интегрирование квадратов функции в том, что для волны результат составляет энергию не самой функции, а её производной. Она могла быть определена через произведение значения функции и второй производной именно потому, что в этом случае множитель локальной частоты распределяется, и остаётся только один раз на функцию. Он отражает относительную скорость изменения, вместе со значением функции становится просто скоростью, и общее значение возводится в квадрат. При вычислении энергии через интегрирование квадрата функции постоянная составляющая даёт весомый вклад в энергию. Но если энергию брать от производной, то перед возведением в квадрат этот вклад умножается на частоту — и у нулевой частоты вклада не будет.
У нас есть пара типов энергии. Уже вполне ясно что с этим можно сделать, искать другие.
Значение функции и энергию с остатком фазы в заданной точке можно представить как
Зададим функцию, вклад в различие составляющих энергии у которой будет зависеть от аргумента. Два варианта поворота.
Получится два интеграла
Просчитаем вид интеграла в общем виде для всех направлений
, и тогда та же энергия будет просто суммой покомпонентных интегралов квадратов функции.
и
сами будут комплексными, или распределёнными функциями?
Энергия без сдвига фазы рассчитывается так:
Как устроены волны? Как и всё — непреодолимо загадочно. Но из них, как и из всего, можно сделать зеркало. Чтобы разгадать главную загадку. А зачем ещё они нужны?
Сегодня международный день полёта человека в космос, и день космонавтики.
Шестьдесят лет назад человек вышел в космос! Поздравляю вас с этим праздником.
Чтобы ухватить это общее предлагаю разбираться в волнах последовательно.
Начнём с вопроса, на первый взгляд не связанного с темой, но ответ на который сразу много прояснит.

Рис. 1. «Две параллельные линии». Канва, браш. Рама.
Перед вами две параллельные линии, с ограниченной областью их просмотра, квадратным окном. Для различия они раскрашены. Вопрос простой: если красная линия это сдвинутая зелёная, то в какую сторону произошел сдвиг?
Варианты:
- По диагонали вправо-вверх.
- Вправо.
- Вверх.
- Могут быть все три предыдущих ответа.
- Не только отдельно вверх или вправо, но и все промежуточные направления..
- Другой ответ, так как некоторые возможности не указаны.
Основы
Представляю вашему вниманию: волна, в самом естественном виде.

Рис. 2. Волна в движении. (Здесь задумана анимация. Но вместо анимации пространственного среза — функция от пространства и времени)
Что изображено? Пространственный профиль.
Какая особенность? Он движется, и при этом не меняется.
В самом общем смысле волна это соединение пространства и времени через распределённое, но единое содержание.
Список разделов статьи
Основы
Потоки и их столкновение
Аппроксимация точечными источниками
Концентрические волны
Взаимосвязи
Огибающие
Частотное пространство
Тёмная сторона волны
Третье измерение
Вращение
Производные
Поляризация
Источники и стоки
Энергия
Потоки и их столкновение
Аппроксимация точечными источниками
Концентрические волны
Взаимосвязи
Огибающие
Частотное пространство
Тёмная сторона волны
Третье измерение
Вращение
Производные
Поляризация
Источники и стоки
Энергия
Разумеется, волна — это больше, чем движение профиля, но для демонстрации этого нужны дополнительные пояснения.
В предваряющей статье о разборе круга рассказывалось о том, как понятие производной дополняет определение круга, это не просто постоянство суммы квадратов координат.
***
Как вам картина (Рис. 1)? Эти две линии напоминают два идущих друг за другом гребня волны. Но правильный ответ на вопрос о направлении сдвига, как ни странно, шестой — «И не только промежуточные». Потому что направление может быть любое, кроме направления вдоль самой линии. Если не допускать отрицательной величины сдвига, то можно, конечно, исключить направления, для которых нужно двигаться в обратную сторону. Но движение по таким направлениям, которые приближены к самой линии больше, чем направление вверх или вправо — тоже вариант.
Например, сдвиг, который складывается из двух шагов вверх и одного шага влево. Сумма коэффициентов при смешивании у шагов вправо и вверх единица, даже если один из коэффициентов отрицательный. Такое, допускающее внутренние варианты, равенство. А с применением комплексных чисел в сумме одно из слагаемых может быть отрицательным, даже если складываются квадраты.
Движение пространственного профиля во времени может быть представлено функцией от двух аргументов, от пространства и времени. Причём, у такой функции значения вдоль диагонали, совпадающей своим направлением с совмещением движения профиля в пространстве и времени, будет сохраняться. Производные такой функции вдоль координаты пространства и вдоль координаты времени будут по абсолютному значению равны, но противоположны по знаку.
Если бы профиль двигался в другом направлении, влево, то производная по пространству осталась бы той же, а производная по времени поменяла бы свой знак, и они стали бы равны.

По сравнению с предыдущим изображением здесь изменено направление
Вторые производные по пространству и по времени будут между собой совпадать. И для функции, сдвиг у которой происходит в противоположную сторону, вторая производная по времени со второй производной по пространству тоже совпадает. В качестве иллюстрации, можно показать, что участок с постоянным ускорением в пространстве выглядит как участок параболы, и если на графике компенсировать постоянную скорость, то относительно точки с этой скоростью график будет симметричен.
Когда говорится о равенстве вторых производных, речь о раздельных направлениях пространства и времени. Направления, совмещающие направления перемещения гребня в пространстве и времени — ведут к неизменности функции, а значит, и нулевым производным вдоль них. Зато, в других совмещениях направлений, в которых пространственное направление противоположно направлению распространения, множитель результата второй производной может доходить до двух.
Если мы возьмём функцию, вторая производная по пространству и вторая производная по времени у которой совпадает, то она позволит существовать не только профилю, движущемуся вправо, или профилю, движущемуся влево, но и функции, которая представляет собой сумму таких профилей. Это и есть дополнительная особенность волны: возможность прохождения через одну точку нескольких профилей в разных направлениях.
Формула волны это равенство второй производной по времени и второй производной по пространству.
Пространственная производная зависит от направления дифференцирования. Общая пространственная производная это вектор, проекция которого говорит о производной в заданном направлении. Вторая производная в прямом и обратном направлении совпадает, общая вторая производная по пространству это число.
Общая вторая производная по пространству это сумма вторых производных по отдельным координатам.
У движущихся навстречу профилей в одномерном пространстве можно отметить два эффекта:
- Эффект отражения. Если встречные профили одинаковы вдоль своих собственных направлений, за исключением противоположного знака, то можно найти точку, в которой у профилей совпадают внутренние координаты, сумма в ней приводит к нулю. Эта точка будет приводить к зеркальному эффекту: профиль идущий на эту точку будет как бы отражаться и идти обратно, поменяв знак.
- Эффект стоячих волн, когда встречные гармонические колебания одной частоты периодически, то гасят друг друга в ноль, то складываются в гребни и впадины, при этом образуя узлы постоянных нулевых значений и пучности колебаний двойной амплитуды, не сдвигаясь ни в одну из сторон. В пространственно-временном распределении это выглядит как сетка из линий нулевых значений вдоль пространства и времени, в квадратных ячейках которой присутствуют гребни, знак которых определяется в шахматном порядке.
При введении ограничения на частоты стоячих волн не будет. Например, такого, чтобы вся плоскость была нулевой, за счёт того, что встречные профили друг друга полностью гасят, а в следующий момент волны появляются — уже не случится. Здесь в отсутствие реальной составляющей о существовании волны будет говорить мнимая составляющая, и наоборот. Общий результат встречных гармонических волн одинаковой амплитуды будет синусоподобная функция, с общим коэффициентом зависимости от времени вида
Для положительных частот вращение во времени идёт в обратном направлении по отношению к вращению в пространстве. Пояснить это можно на примере болта. У болтов правосторонняя резьба, и чтобы закрутить, нужно крутить болт вправо, по часовой стрелке. Но при закручивании гребень волны приближается к шляпке болта, вместе с прикручиваемой деталью. Поэтому, для того чтобы гребень волны отдалялся, вращение нужно производить в противоположную сторону. Отрицательные частоты и в пространстве закручиваются против часовой, и во времени вращение идёт против часовой, это приводит к отрицательному направлению движения в пространстве.

Если мы видим отсутствие мнимой составляющей у среза функции на определенный момент, это значит, что мнимые составляющие противоположных частот погасили друг друга. В следующий промежуток времени один профиль разойдётся на два одинаковых, движущихся в противоположных направлениях, с появлением противоположных мнимых составляющих.
Добавление ограничения частот делает производную по времени характеристикой, включённой в пространственное распределение. Вместо содержания отдельно состояния и отдельно данных о его изменении, всё содержится в функции в пространственном распределении, в комплексных значениях. Ограничение возможных состояний приводит к более тесной взаимосвязи составляющих.
Потоки и их столкновение
Перемещение профилей можно воспринимать как поток, как размеренную передачу некоторого ресурса на расстояние. Величина потока больше связана с изменением значения функции, чем с самим значением, так как при постоянном значении можно сказать, что передачи не происходит.
Поток в виде постоянной передачи в случае одномерной функции с действительным значением выглядит как
Если для функции использовать комплексные значения, то постоянная скорость изменения может быть постоянной не сама по себе, а с учётом перпендикулярного движения в качестве изменения фазы, вращения. И тогда чистый поворот в комплексном пространстве будет одновременно и постоянным изменением и изменением ограниченным.
Интеграл по контуру с заданным расстоянием от источника приводит к постоянному значению функции, постоянному суммарному значению производной по времени и постоянному суммарному значению пространственной производной относительно контура, что значит, что поток при расхождении сохраняется.
Интересно, что не смотря на то, что распространение занимает время, при условном смещении общего уровня на
Если величина потока из источника будет зависеть от времени нелинейно, эффекта мгновенности не будет, но интегрально поток на постоянном расстоянии будет равен потоку источника в соответствующий момент.
При действительной функции несколько источников постоянного потока при таком интегрировании по любому контуру, включающему источники, дают сумму величин исходящих потоков.
Если заменить постоянно изменяющиеся действительные потоки на постоянно вращающиеся комплексные, то можно заметить, что при одном источнике для постоянного потока постоянной частоты интеграл по контуру постоянного радиуса даст одно и то же значение, с фазой, которая прямо соответствует фазе источника в момент испускания. То есть, интеграл совпадает с величиной испускания, также, как и в случае действительной функции.
Но если центр у контура интегрирования в виде окружности сместить, то у суммарного потока значение уменьшится, кроме векторного сложения значений произойдёт и гашение комплексной амплитуды, из-за размытия фазы.
Для нескольких разнесённых источников с колебаниями в одинаковой фазе потоки будут накладываться так, что интеграл и значений и производных по окружающему контуру всегда будет меньше, чем сумма потоков самих источников.
Конечно, интересный вопрос, куда исчезает поток, и не стоит ли компенсировать это через различие фаз, а то и изменение амплитуд? Нормировку какую-нибудь произвести… Но есть и более важный вопрос. А ничего, что представленное двумерное рассеяние уже не выполняет волновое уравнение?
Похоже, с двумерным распределением потока волн не так всё просто.
Если взять интеграл по окружающему контуру от производной вдоль радиуса, для функции, заданной как распределение волны одной частоты с рассеянием обратно пропорционально расстоянию, получим
Самые простые волны для рассмотрения это плоские. Плоская волна характеризуется тем, что колеблется в пространстве вдоль только одного направления, вдоль всех поперечных ему направлений она постоянна. Для изучения потоков можно разобрать, как накладывается две плоские волны одной частоты разных направлений.
После расхождения потоки выглядят точно так же, как выглядели бы без наложения, какими сошлись, такими и разошлись. Так что, само распределение потоков при их наложении можно описать как сохранение суммарной величины потока, но с перераспределением отдельных частей вдоль поперечной координаты, в виде коэффициента, создающего области обнуления и области удвоения. При расхождении это перераспределение возвращает потокам поперечную составляющую.
Рассмотрим ситуацию с двумя точечными источниками волн. Здесь можно предположить, что накладываясь, волны не гасят, а плавно перераспределяют потоки друг друга, изменяют направление распространения, это как мягкая форма такого же перераспределения, которое было в примере с плоскими волнами. На поток будто наложен множитель, оставляющий неизменным суммарное значение по контуру, но производящий перераспределение. И волны в результате даже в некоторой степени концентрируются в общем направлении, подобно лучу лазера, который с расстоянием не рассеивается.
При таком перераспределении суммарная величина потоков должна сохраняться. Наложение колебаний увеличивает удельный поток в месте концентрации, поток переходит туда из мест взаимного гашения. И результат наложения с эффектом концентрации будет превышать результат расчётного наложение волн, рассеянных обратно расстоянию. Но разве амплитуда наложения двух волн может быть больше суммы амплитуд по отдельности? Если рассеяние правильное, то нет.
Правильное — это какое? Суммарно по контуру амплитуда может и не сохраняться.
Самое время разобраться, что именно сохраняется у волны при распространении.

Иллюстрация того, как волны одной частоты от двух источников влияют на максимальную высоту волны в других местах.
Разумеется, при распространении волн сохраняется энергия.
В примере с двумя плоскими волнами энергия двух потоков перераспределяется в энергию двух видов: кинетическую — которая при сложении потоков сложилась не как вектор, а как два числа, и потенциальную, которая в сложенном виде не проявлена, но при расхождении потоков возвращает вклад в поперечное направление.
В гребне волны энергия тоже двух видов: потенциальная, в виде возвышения гребня, и кинетическая, в виде скорости изменения. Скорость входит в энергию как квадрат величины,
Энергия это действительная величина, её можно считать отдельно для каждой комплексной составляющей, или можно сохранить фазу, не удваивая при возведении в квадрат и умножении.
Общая амплитуда входит в энергию как квадрат величины. Значит, при складывании одинаковых функций суммарная энергия возрастёт в четыре раза. При этом, совсем не пересекающиеся функции дают вклад в энергию линейно, энергией суммы будет сумма энергий. Это значит, что когда при совмещении двух функций требуется сложить энергию, принцип совмещения самих функций уже не является суммой. В таком совмещении для сохранения энергии требуется сбалансировать не только пару функций, а одновременно пару функций и пару их вторых производных. Или пару первых производных по времени, но в квадрате.
Производная по пространству это две составляющих вектора, каждая из которых комплексное число.
Аппроксимация точечными источниками
Если точечные источники с одной фазой излучения выстроить в ряд, то из всех направлений будет выделяться одно. Для излучения сразу всем рядом в других направлениях нужно сдвигать фазу, в линейной зависимости от позиции в ряду, иначе для этих направлений одинаковая излучаемая фаза будет восприниматься вразнобой, и от этого суммарные волны уменьшат свою амплитуду.
Подсчитать как точечный источник излучает гармоническую волну можно двумя способами.
Первый способ.
Сбор волны через сложение профилей для каждого направления полностью согласуется с уравнением волны. От точечного источника излучение волны идёт сразу во все стороны, во всех профилях точка даёт одинаковый вклад. Смещённые в пространстве и времени профили дают вклад обратно в функцию. Так как профиль влияет на соседние направления как проекция, то есть, с растяжением обратно степени сходства направлений – значит, с умножением аргумента гармонической составляющей на степень сонаправленности – то для получения результата суммирования профилей для выбранной частоты нужно проинтегрировать экспоненту с умножением мнимого аргумента на косинус интегрируемого угла.
Существует формула для вычисления этой функции без интеграла.
Сначала нужно выяснить, как выглядит вторая производная по отдельной координате от произвольной функции радиуса.
А сами функции Бесселя по модулю в области нуля даже ещё меньше такого рассеяния.

Фаза функции Бесселя

Нормализованная функция Бесселя с компенсацией рассеяния и сдвигом фазы. Видно падение амплитуды в районе нуля. Комплексные составляющие на отдалении больше 0.5 остаются сходны с косинусом и синусом.
Для отрицательных аргументов функции

Фаза функции Бесселя с компенсацией рассеяния и выбором такого знака у компенсирующего множителя, который выравнивает фазу.
Участок замкнутого контура можно представить состоящим из точечных источников, которые повторяют амплитуду и фазу каждой пришедшей на них гармонической волны от источников изнутри контура. Во внешнем пространстве это будет хорошим приближением волны, за исключением излучения краёв, которое проявляет себя вплоть до добавления оставшихся участков замкнутого контура. В случае замыкания контур сработает как зеркало внутрь, повторитель наружу. Распределение излучения точечных источников должно быть функциями Бесселя, тогда это будет точное представление принципа Гюйгенса.
Концентрические волны
В дифференциальном уравнении
Вторые производные можно представить через значение функции и локальную частоту
Взаимосвязи
Выполнение волнового уравнения не подразумевает источников потока. Приходится делить одну функцию на две, в отдельном виде выполняющих уравнение везде, кроме областей перевода потока с одной на другую. Относительно источника это внутренний и внешний уровень.
На внутреннем уровне точечного источника волна также центрально-симметрична, только наоборот, концентрируется со всех сторон в одну точку. Можно подробно представить такую волну: так как суммарно энергия по одному значению радиуса постоянна, то постоянен по модулю и окружающий интеграл квадрата значения, умноженного на квадрат частоты, а значит, если локальная частота не меняется, то амплитуда меняется обратно корню от расстояния.
Общая ситуация при простом сложении двух функций это изменение энергии: возможно как дополнительное усиление в два раза, так и полное гашение. Так как при позитивном сложении энергия должна сохраняться, то при суммировании требуется использовать коэффициенты, причём, комплексные. Коэффициенты срабатывают так, что сколько суммарно энергии было в функциях, столько и осталось, но пропорция здесь — это уже отношение двух комплексных чисел, а значит, включает не только количественное отношение, но и степень расхождения фаз, дополнительную вариацию. При выбранной пропорции смешивания вариация разности фаз может отражаться на вариации усиления амплитуды. Можно отметить, что для отдельных двух плоских волн, если у них различаются направления или частоты, коэффициенты не нужны. Если и направление и частота совпали, коэффициенты зависят от различия фаз. Если у волн присутствуют и другие составляющие, то отдельный вклад плоских волн зависит от общих коэффициентов, они же общие.
Если рассмотреть по порядку: когда точечный источник выпускает концентрическую волну с обоими знаками одного абсолютного значения частоты, мнимые части гасятся, в результате распределение выглядит как затухающий синус с единицей в нуле. При компенсации рассеяния функция становится похожей на косинус, сдвинутый по аргументу на




Можно рассмотреть волну в контексте изменения размерности. В одномерном случае всё просто — если посреди пространства есть точка перехода, в ней переключаются уровни. На плоскости относительно такой точки надо рассматривать концентрические волны. Они, в дополнение к концентрическому рассеянию, обратному расстоянию, для сохранения баланса энергии усилены на корень от расстояния. Такое усиление ближе определённого расстояния срабатывает как ослабление. Но эффект от балансировки энергии на этом не заканчивается, это ослабление вблизи перехода усиливается дополнительно, при этом меняется не только амплитуда, но и сдвигается фаза.
При переходе через точку фаза проворачивается на четверть круга. А это значит, что если отследить моменты, когда встречные волны различаются на четверть круга, то получим следующее. Разница в четверть имеет направление — сдвинута прямая волна относительно обратной или наоборот. Противоположные варианты вдоль радиуса чередуются. Но при переходе через точку очерёдность переключается. Как будто добавилось пространство, причём, размер изменения пространства имеет обратную зависимость от частоты, прямую зависимость от длины волны. Для произвольных волн это выглядит как обмен мнимой и реальной составляющей, с изменением знака для одного из направлений обмена.
Совмещение противоположных частот требует перебалансировки энергии, значит в профильном представлении у встречных концентрических волн присутствуют общие компоненты. Вывод: ясно, что концентрические волны это не плоские, а плоские не концентрические, возможно, стоит поискать и другие типы волн, промежуточные к этим двум видам. «И не только промежуточные».
Огибающие
В уравнении
Координаты
Только, при решении уравнения Шредингера
Альтернативный вид уравнения Шрёдингера:
Частотное пространство
Преобразование Фурье основано на том, что интеграл произведения двух гармонических функций не равен нулю только если их частоты в сумме дают ноль. Два аргумента в интеграле работают вместе, один внутри интеграла проходит пространство, а второй является внешним аргументом, срабатывает как детектор амплитуды для выбранной частоты.
Преобразование переводит функцию из пространственного представления в частотное. При втором применении может перевести обратно в пространственное, только частоты поменяют свой знак, функция развернётся по аргументу, и потребуется нормировочный коэффициент
Гауссиана — особенная функция.
С гауссианой при преобразовании Фурье всё просто — когда функцию сужаешь, результат её преобразования расширяется, общая амплитуда, для сохранения энергии, уменьшается. Соответственно, при расширении функции результат преобразования, наоборот, сужается, и его общая амплитуда при этом растёт.
Степень закручивания фазы на пике будет половиной от произведения величин отдельных сдвигов, форма линии одной фазы в фазовом пространстве — гипербола. Преобразование Фурье от сдвинутой гауссианы можно представить плавным поворотом положения пика на четверть круга в фазовом пространстве, со сдвигом общей комплексной фазы, в соответствии пересекаемым при этом гиперболам.
Все функции, раскладываемые на гауссианы, можно подвергать плавному преобразованию Фурье. Для этого придётся различать фазу как множитель и фазу как проявление сдвигов гауссиан. Первая при повороте не меняется, а вторая, пропорционально произведению сдвигов, меняется на противоположную.
Если гауссиану умножать на экспоненту, то это будет эквивалентно её сдвигу и умножению на коэффициент. Если умножать на гармоническую функцию, это тоже будет эквивалентно сдвигу и умножению на коэффициент, который уже сам будет как гауссиана от частоты. Но тогда и сдвиг имеет мнимую компоненту.
Для того чтобы интеграл гауссианы привести к единице есть два способа: поменять общую амплитуду, поделив на
Преобразование Фурье от функции Бесселя имеет интересное аналитическое представление
В продолжение, мнимая часть решения уравнения Бесселя, функция Неймана, преобразуется в ту же функцию, с изменённым знаком под корнем.
***

Преобразование Фурье функций
Тёмная сторона волны
Можно заметить, что встречные волны влияют на первую производную функции так, что в ней остаётся только разница этих волн. А вторая производная не теряет, а складывает соответствующие величины, по Пифагору. Общую вторую производную можно выразить через две первые производные, соответствующих базисным направлениям, а величина гашения будет добавлена отдельно.
Чтобы явно задать пространственные составляющие этой величины можно пересечь по две плоских волны для каждого базисного направления, и она даже будет похожа на вектор. Но у вектора все проекции на любой базис согласованы, а здесь распределение по координатам может иметь отдельное значение для каждого направления. Так же как в профильном представлении волны в каждой точке для каждого направления даётся отдельное значение функции, так и здесь для каждого направления разделение величины на вдоль него и поперёк своё.
Впрочем, эта величина выражает прежде всего то, как задана потенциальная энергия, а поэтому представляет собой характеристику огибающей. Огибающая не такое простое понятие — как видно из разбора наложения плоских волн, она может даже менять частоту результата. Если разбирать детально, то нужно учесть, что у огибающей может быть и своя огибающая, значит, придётся разбирать, как несколько последовательных или равноправных огибающих выражаются в одном описании локальных изменений. Сложение двух функций тоже можно рассмотреть как операцию с огибающими.
Тёмная сторона волны представляется мне циклическим потоком внутри каждого отдельного места, энергия вложена, но на приём-передачу не идёт. Но зато она идёт на изменение формы огибающей, а это значит, что может являться вкладом, который забирает не тот, кто положил — а значит, всё равно, в каком-то смысле, передачей.
Третье измерение
При добавлении третьего измерения в профильном представлении в координате направления размерность станет на единицу больше.
Но изменится не только это. Для плоской волны фронт в пространстве уже действительно становится плоскостью, и на ней можно дополнительно выбрать направление колебания, появится поляризация. Это приводит к делению одной волны на две составляющие, по одной на каждое базисное направление, перпендикулярное к направлению распространения.
Причём, у каждой части не только своя амплитуда, но и фаза — парная волна может повторять в мнимой составляющей реальную, а в реальной мнимую, с изменением знака для одного из направлений. Для таких волн оценку энергии можно делать исходя только из реальных составляющих. Конечно, парная фаза может и просто совпадать с исходной. А может быть так, что в парной составляющей будет нулевая амплитуда, что делает добавление поляризации похожим на возвращение сопряжённых волн — те похожим образом гасят поперечные колебания в комплексном пространстве. Но деление на две составляющих даёт явное развитие по сравнению с волнами на плоскости.
Из-за такой поляризации значение у пространственного распределения волны становится вектором. Дать общее пространственное направление у вклада два профиля могут только если направления их распространения перпендикулярны этому общему направлению. Иначе вклад профиля вместе с отличием от перпендикуляра уменьшается, а вклад в другие направления, в степени сходства с общим перпендикуляром, увеличивается. Получается, чем более сходны направления у значения и распространения, тем меньше вклад.
Очень подозрительно, когда значение функции похоже на всё что угодно, только не на направление распространения.
Поделить волну на две части можно и по-другому.
Волновое уравнение — это равенство вторых производных по пространству и по времени, а в трёхмерном пространстве уже для первых производных по пространству и времени можно обозначить выражение равенства, но — только для разделённых между собой полей.
У таких полей для каждого их всех трёх базисных пространственных направлений задано своё значение. Производная по времени одного поля одной составляющей будет пространственной производной другого поля во втором направлении от составляющей третьего направления. А так как таких соответствий два, то одно значение делится «на двоих», пропорция подбирается на месте, и для одного из направлений изменён знак. От второго поля к первому такая же зависимость, только, тоже, изменён знак. Не сложно правильно расставить знаки, самосогласованных вариантов — как вариантов вращения, всего два.
Будем разбираться как связаны эти два представления. Сравним количество локальных характеристик. В профильном представлении итоговое пространственное значение это три числа, поляризация умножает на два, итого шесть. В полевом представлении по три действительных составляющих на два поля, итого составляющих тоже шесть. Совпадает, можно разбираться дальше.
Для этого надо разобраться в векторном произведении двух векторов. В нём нет ничего сложного, как и в произведении двух комплексных чисел, амплитуду можно подсчитать отдельно, фазу — или уже направление — отдельно. Амплитуда, разумеется, является произведением, только добавится множитель, равный косинусу отличия угла между векторами от прямого. А вот направление у результата имеет две особенности. Первая особенность — что результат перпендикулярен двум исходным направлениям. А вторая особенность — что, так как таких перпендикулярных направлений два, выбор зависит от последовательности аргументов умножения. У базисных векторов в пространстве есть порядок, один из двух вариантов, и векторное умножение можно считать операцией, сохраняющей этот порядок.
Произведение двух векторов можно представить определителем матрицы. Матрица — вектор, составляющие которого — тоже вектора, одинаковой размерности. Определитель матрицы — это величина объёма параллелепипеда, составленного из составляющих матрицу векторов. Но если из трёх трёхмерных векторов один вектор имеет в составе не величины, а три вектора от базиса, то определитель станет тоже вектором, это и будет векторное произведение. В такой математике, в которой самая сложная операция — вычисления объема параллелепипеда, нет ничего сложного. Но если первый аргумент умножения будет содержать вместо вектора оператор производной по базису, определитель матрицы превращается в ротор.
В объёме всё точно так же, только результат не число, а вектор. Значит, ротор — это тоже индикатор вращения. Вот кто бы знал. Казалось бы, волны и вращение — какая может быть связь? Придётся разбираться и в этом.
Вращение
Рассмотрим поворот на плоскости. У плоских волн выполнить поворот просто — надо притормозить волну в прямом направлении, умножив на коэффициент
Для концентрических волн поворот тоже возможен. Чтобы не нарушать концентрическую форму, его нужно выполнить в профильном представлении как добавление смещения у профиля, по направлению движения, с линейной зависимостью от направления. Если сдвиг фазы будет одиночно кратен обороту направления, тогда профили противоположных направлений будут сходиться в центре в противофазе, а это говорит о постоянном значении, и значит, зеркале в точке схода. Если там будет зеркало, возможности сконцентрировать весь фронт в одной точке и выкинуть на другой уровень уже не будет.
Определим значение профиля и проинтегрируем, чтобы получить значение функции вдоль одного направления.



Распределение является решением уравнения Бесселя, как соответствия общей второй производной, взятой как сумма вторых производных по радиальному и тангенсальному направлениям — при единичной частоте самому значению функции, взятому с минусом.

Иллюстрация границы фаз. Распределение со временем вращается.
При разделении координат на радиус и направление
При рассмотрении аналогии со сложением двух плоских волн можно сделать вывод: кручёная концентрическая волна в процессе пересчёта волны из до-потенциальной в после-потенциальную, с выделением огибающей, сталкивается сама с собой и идёт в новом направлении.
У закрученной концентрической волны, так же как было с обычной концентрической волной, можно восстановить мнимую составляющую, функцию

Отдельно
Интересно, как такое распределение, движение которого во времени выглядит как вращение результата в пространстве, выглядит в профильном представлении? Может быть, так же как у повёрнутой концентрической волны — со сдвигом, пропорциональным направлению — только, мнимая часть по каким-то причинам не гасится? Это говорит о том, что при учёте стоков и источников профильное представление будет расширено — например, разделением в пространстве областей для вкладов встречных профилей.
Производные
Для функции от нескольких координат производная это функция, которая показывает, как меняется исходная функция вдоль каждого из направлений этих координат. Получается, сколько координат, столько значений — то есть, это вектор. Чтобы получить эту векторную функцию, нужна функция от функции, то есть, оператор. Обозначается как
Если мы на плоскости возьмём две функции — по одной на координату, то производная будет иметь четыре значения — с делением на два по тому, от какой функции берётся производная, и с делением на два, по какой координате. Среди этих значений — два значения будут взяты по своим координатам, а два значения по противоположным. Для векторных функций на плоскости можно выделить две производных, состоящих из сумм этих значений.
Обе характеристики весьма информативны. Если бы векторная функция на плоскости обозначала направление движения, то ненулевой ротор говорил бы о тенденции ходить кругами. Ненулевая дивергенция говорила бы о том, что количество идущих не постоянно. Можно ясно представить, как элементы массы движутся, и движение спровоцировано двумя способами: либо в каком-то месте элементы добавляются и требуют распределения, вплоть до места, где их обратно забирают, либо происходит хождение кругами. Либо и то и другое вместе.
Ротор показывает степень изменения направления перемещения, и такой поворот это вовсе не следствие включённости элемента в поток распределения, это всегда противодействие такому потоку. А дивергенция показывает как распределён по пространству источник, из которого приходит то, что движется по векторному направлению значения функции.
У функции, полученной градиентом, движения элементов согласованы и нет тенденций кружить — ротор любого градиента будет нулевой. Ротор убирает все признаки источника, почему-то даже у результата, дивергенция от ротора ноль. Ротор для пространства удобней обозначать
В пространстве для волны, представленной функциями
Если проследить за тем, что соответствует источнику поля, которое является векторным произведением полей
Сама функция
Изменение распределения заряда может мгновенно изменять одну часть распределения, но при этом будет менять и другую часть, которая полностью отменяет влияние до тех пор, пока до тех мест не дойдёт сигнал об изменениях, а когда это будет — совсем другое вопрос. Может вообще не дойти, если отменят. То есть, даже просто поле
Поляризация
Чтобы выяснить, как связаны три различных представления волны, нужно рассмотреть связи их компонентов. Профильное представление содержит комплексные числа, количество которых для отражения поляризации расширено до двух. Представление через поля имеет по два поля, по три действительных компоненты для каждой пространственной точки. Для промежуточного представления, в котором так же как у профильного для выделенного направления и сдвига задаётся значение, которое представлено векторным произведением полей, состав может быть дополнен характеристиками, дающими возможность их восстановления. В рамках плоскости, перпендикулярной к произведению, в качестве поляризации даётся направление
Количество компонент: полевое представление:
Здесь и заключается тонкая грань между представлениями. В профильном представлении третье направление поляризации считается характеристикой источника, а не поля. Если в поле сохраняется поляризация вдоль направления распространения, это значит, что действие источника ещё не прекратилось, профили не разошлись. А с другой стороны, что, жалко что ли добавить третью компоненту? Да не жалко. Пусть летит волна, одна из компонент которой вдоль направления движения — значит, в каком то смысле, вдоль времени.
В целом, получилось интересное поле — характеризующееся шестикомпонентным числом, совмещающим три комплексных числа, или два вектора — способов разделения на компоненты несколько. Но в промежуточном представлении вектор совпадает с направлением движения, а значит, количество скалярных компонент не три, а одна. Похоже, для чистых волн без связи с источником, их действительно только четыре. Так что, вопрос количества компонент поляризации — это вопрос сохранения связи волны и её источника. На связь уходит как минимум две компоненты из шести.
Источники и стоки
Рассматривая сток/источник посреди спирали можно сделать вывод, что источники могут быть разные: один вид испускает во все стороны волны, соответствующие значению в центре, другой вид имеет нулевое значение в центре, а волны противоположных направлений имеют противоположные фазы. Да ещё и вращаться можно. Если говорить о соответствующем стоке, он тоже выполняет свою функцию: перевод энергии на другой уровень точно так же не даёт волнам встречных профилей зайти на общее пространство.
Два источника, отправляющие волны на встречу друг другу, могут рассчитывать на два варианта событий: на пространственное наложение встречных волн, с компенсацией потока энергии, или на нахождение между ними стока, который проведёт волне смену пространства, забрав энергию.
Волны задаются распределением источников, а сами источники имеют правила распределения, включая правила движения и реакции на приходящие волны. В целом, статья про волны закончена, осталось небольшое исследование возможных распределений источников и совмещения волн и источников вместе.
Распределение заряда и распространение волны может представлено в различных пространствах, для соотнесения пересчитываемых между собой через свёртку. При размытии функции результат получается свёрткой с профилем размытия. Преобразование Фурье заменяет свертку двух функций на произведение значений для одинаковых частот. Но у размытия есть и обратная операция: наведение чёткости — свёртка с обратным для исходного профилем. Обращение профиля достаточно простое действие, если нет частот с нулевой амплитудой. Когда есть два пространственных распределения: заряда и волны, и одно из них размыто, то можно произвести наведение чёткости. То что было размытым — станет чётким, а вот тому, что было обычным, придётся стать сверх-чётким. Что, вполне ожидаемо, позволяет появиться повсеместному ненулевому заполнению, исчезающему при размытии.
Преобразование Фурье от гауссианы

График функции

И её преобразование Фурье,
При противоположных значениях

График функции

И её преобразования Фурье,
Распределение источника может быть точечным, может быть гауссианой, а может быть расширенной гауссианой, с единичной амплитудой по всему простраству, из-за распределения фазы дающее единичный интеграл.


Квадрат коэффициента можно представить в виде суммы реальной и мнимой составляющей.
Что у коэффициента
Преобразование Фурье сохраняет энергию функции — каждая разделённая по области аргумента часть функции содержит одинаковую энергию до и после преобразования. При суммировании частей функции энергия зависит от их пересечения. В исходной функции части поделены по аргументу. Результат преобразования из-за различия частот также не содержит влияния частей на энергию других. Но и при плавном преобразовании Фурье каждая часть перераспределяется так, что вместе с преобразованием других частей наложение происходит без изменения энергии функции.
Рассмотрим, какое влияние на энергию оказывает изменение коэффициента
Норма интеграла позволит выводить энергию без отношения к расходящемуся интегралу как к исключительному случаю.
Фигура кардиоиды — это проявление механизма, когда один единичный круг вращается вокруг второго единичного круга, зацепившись как шестерёнка. Видимо, это ещё и волновой механизм. Для построения кардиоиды нужно сложить два единичных вектора, только один из них нужно поделить пополам: одна половина будет постоянного направления, а угол направления другой будет удвоенный относительно угла второго вектора.

Несколько уравнений, задающих кардиоиду выбранного размера:


Знак функции при отрицательной реальной части
Если знаки у правой и левой части первого слагаемого не совпадают, то направление кардиоиды вдоль горизонтали меняется, значение функции становится мнимым, и кроме того, при переходе через

Второе слагаемое энергии зависит от одного действительного числа и график в координатах


Деление на
Энергию можно расписать немного шире.
Преобразование Фурье гауссианы в аспекте преобразования энергии можно записать как
***
Преобразование Фурье служит методом пересчёта движущегося профиля в статичные колебания, образующих движение только совместным действием. Одно такое колебание выделенной частоты не различается в пространстве по амплитуде и не различается по пространству и по времени иначе, чем по стабильно меняющейся фазе. С одной стороны, энергия должна сохраняться, так как это свойство смены представления одного и того же процесса. Можно даже попробовать источники, со всем их процессом изменений включить в систему рассмотрения с другого ракурса. Но с другой стороны, дополнительные преобразования проявляются внутри преобразования Фурье как дополнительные характеристики, и здесь кое что не ясно — они задают сохранение энергии, или подчиняются ему?
Можно запутаться, но я, вспомнив принцип болтика, понял: к чему прицепился — то и не двигается. То есть, вопрос взаимосвязи функции и энергии зависит от того, кто спрашивает: физик или математик. И физик, который исходит из того, что энергия сохраняется, бывает не прав — так как этим отсекает передачу её в ещё неизвестных направлениях. Не смотря на то, что действительно, что сохраняется — то и энергия. Математик может разобраться, каковы условия сохранения энергии. Но и в математике есть принципиальные недостатки: можно незаметно для себя всё слишком упростить. Это видно на примере задачки про линии. Только физика может напомнить, что практика важнее математики. Физика открыта новому, поэтому часто движет математику. Математика же принципиально не может разделить автоматическое упрощение и непрактичность.
Энергия
Отличие энергии, использованной для определения энергии волны, от энергии, полученной через покомпонентное интегрирование квадратов функции в том, что для волны результат составляет энергию не самой функции, а её производной. Она могла быть определена через произведение значения функции и второй производной именно потому, что в этом случае множитель локальной частоты распределяется, и остаётся только один раз на функцию. Он отражает относительную скорость изменения, вместе со значением функции становится просто скоростью, и общее значение возводится в квадрат. При вычислении энергии через интегрирование квадрата функции постоянная составляющая даёт весомый вклад в энергию. Но если энергию брать от производной, то перед возведением в квадрат этот вклад умножается на частоту — и у нулевой частоты вклада не будет.
У нас есть пара типов энергии. Уже вполне ясно что с этим можно сделать, искать другие.
Значение функции и энергию с остатком фазы в заданной точке можно представить как
Зададим функцию, вклад в различие составляющих энергии у которой будет зависеть от аргумента. Два варианта поворота.
Получится два интеграла
Просчитаем вид интеграла в общем виде для всех направлений
Энергия без сдвига фазы рассчитывается так:
***
Как устроены волны? Как и всё — непреодолимо загадочно. Но из них, как и из всего, можно сделать зеркало. Чтобы разгадать главную загадку. А зачем ещё они нужны?
Сегодня международный день полёта человека в космос, и день космонавтики.
Шестьдесят лет назад человек вышел в космос! Поздравляю вас с этим праздником.