Как стать автором
Обновить

0! = 1? или почему факториал нуля равен единице

Время на прочтение2 мин
Количество просмотров234K
Давным давно, еще в классе 10-ом (лет 8 назад) я случайно обнаружил довольно нехитрое объяснение того, почему факториал нуля равен единице.

Я рассказывал про это многим учителям, но никого не торкнуло. Поэтому я просто выложу это знание здесь, а то вдруг кому-то пригодится или наведет на определенные мысли. Сразу скажу я не математик, наткнулся на это случайно, когда игрался с числами. Я тогда даже не знал что такое факториал :)

Для начала вспомним общую теорию:

Факториа́л числа n — произведение всех натуральных чисел до n включительно:

image

По определению полагают 0! = 1. Факториал определён только для целых неотрицательных чисел.


На самом же деле факториал нуля вполне вычислим!
Для этого нам нужно проделать простую последовательность обычных математических операций.

Попробуем в действии на примере факториала n = 4 (4! = 1 * 2 * 3 * 4 = 24)

  • Сначала берем последовательность из n + (1 или больше) чисел, где каждое последующее число больше предыдущего на 1.

    Например:
    1 2 3 4 5

  • Затем возводим каждое число в степень n и ниже записываем результаты

    Получаем:
    14 24 34 44 54


    1 16 81 256 625
  • Теперь вычитаем из последнего числа предпоследнее, и так далее

    На выходе получаем ряд чисел количество которых меньше на 1:
    (16 — 1) (81 — 16) (256 — 81) (625 — 256)

    15 65 175 369
  • Повторяем предыдущий шаг уже на полученном ряде до тех пор пока не останется одно число (или ряд одинаковых чисел, если кол-во больше чем n + 1)
    (65 — 15) (175 — 65) (369 — 175)

    50 110 194
    (110 — 50) (194 — 110)

    60 84
    (84 — 60)

    24

    В результате мы получаем факториал числа четыре.


Попробуем вычислить этим способом факториал 3 (3! = 1 * 2 * 3 = 6)
Берем четыре числа в степени 3 и вычисляем «пирамидальную разность» (сам придумал)

13 23 33 43
1 8 27 64
(8 — 1) (27 — 8) (64 — 27)

7 19 37
(19 — 7) (37 — 19)

12 18
(18 — 12)

6
Все сходится!


Ну и для 1 попробуем (1! = 1)
11 21
1 2
(2 — 1)

1

Вы уже догадались? :)

Все очень просто и для нуля:

Берем n + 1 чисел в степени 0, тоесть достаточно и одного

1o
1


Вуaля! Любое число в степени 0 равно 1. В этом, кстати, слабость моего способа, он использует определение.

Но тем не менее, я считаю, что это здорово :)

Спасибо за внимание!

P.S.:
Как многие подметили это не доказательство, а всего лишь забавная закономерность.

Теги:
Хабы:
Всего голосов 157: ↑126 и ↓31+95
Комментарии80

Публикации

Истории

Ближайшие события

2 – 18 декабря
Yandex DataLens Festival 2024
МоскваОнлайн
11 – 13 декабря
Международная конференция по AI/ML «AI Journey»
МоскваОнлайн
25 – 26 апреля
IT-конференция Merge Tatarstan 2025
Казань