Ученые из России и Кореи провели теоретическое исследование трех различных моделей ускоренного расширения ранней Вселенной. Они рассмотрели модели, в которых потенциал, вызывающий расширение, генерируется квантовыми эффектами. Оказалось, что первая модель может быть согласована с наблюдениями, а остальные две нет. Исследование было опубликовано в Physics of Particles and Nuclei Letters. 

В последние годы ученые пытаются разгадать загадку космической инфляции — периода стремительного расширения нашей Вселенной в ранние моменты ее существования. Проблема в том, что существующие теоретические модели не всегда соответствуют тем данным, которые мы получаем из наблюдений. Более того, оказывается непонятным происхождение тех потенциалов. с помощью которых удается описать инфляцию. Недавние исследования, о которых идет речь в новой статье российских физиков, предлагают свежий взгляд на эту проблему, изучая различные модели, описывающие инфляцию и их соответствие наблюдаемым данным.

Ученые провели численный анализ трех относительно простых моделей инфляции, каждую из которых характеризуют уникальные параметры. Результаты исследования показали, что первая модель, описывающая инфляцию с помощью скалярного поля с ненулевой массой и минимальным гравитационным взаимодействием, демонстрирует согласие с данными наблюдений при определённых условиях. Однако не все параметры в этой модели способны поддерживать данное соответствие.

Исследования показали, что вместе с тем, параметры, находя��иеся ниже предела массы Планка, представляют самый интересный и многообещающий диапазон. В частности, особое внимание было уделено области малых значений массы и большому начальному значению скалярного поля, что указывает на необходимость дальнейших исследований в этой области.

Вторая модель описывает безмассовое скалярное поле, взаимодействующее с гравитацией неминимальным образом. Она пытается учесть вклад только от гравитации. Параметр N (количество е-фолдингов, то есть расширений в число е раз) имеет нижнюю границу в районе 50—60, что соответствует инфляционному расширению до стадии разогрева Вселенной. Полное количество е-фолдингов может быть и больше, в зависимости от рассматриваемой модели. Поэтому вторая модель не подходит (помимо сильной связи), т. к. она согласуется с наблюдательными данными только при N = 40. Это ставит под сомнение ее способность решать проблемы горизонта и плоскости, которые стоят перед космологией. 

Третья модель — это обобщение модели Колмана—Вайнберга для гравитации, которая также не совпадает с наблюдениями. Хотя она использует сложные параметры для описания эффективного потенциала и учитывает взаимодействие поля с самим собой, результаты показывают ее несовпадение с данными наблюдений, что указывает на необходимость дальнейших усовершенствований и неприменимость этой модели в существующем виде.

«Рассмотренные нами модели являются минимальными модификациями общей теории относительности, что делает их простейшими естественными кандидатами на роль истинной теории космической инфляции, — рассказал Владимир Шмидт, ассистент кафедры высшей математики МФТИ. — Мы пришли к выводу, что первая модель отлично согласуется с наблюдениями при некоторых значениях параметров, а оставшиеся две нуждаются в модификации».

В рамках первой модели было рассмотрено 4 случая: инфляция, в которой вселенная N = 50 раз расширилась в число e (около 2,71828) раз, 60 раз, 64 раза и 70 раз.

Вселенной
Рисунок 1. Инфляционные параметры для случая N = 70 раз расширений в e раз. Маркеры графика соответствуют различным значениям массы m, оцененным в безразмерных единицах. Штриховка отмечает область, которая согласуется с данными наблюдений. Источник: журнал Physics of Particles and Nuclei Letters.

В первую очередь исследователей интересовали параметры ns и r, которые играют ключевую роль в понимании инфляционного процесса и его влияния на формирование структуры Вселенной. Первый из них называется спектральным индексом, который представляет собой меру того, какие структуры (флуктуации плотности вещества в ранней вселенной) возникают чаще: более плотные или менее плотные. Значение его единица соответствует равномерному распределению структур. Если он ме��ьше единицы,то крупные структуры возникают чаще, если больше, то реже. Оценить этот спектральный индекс можно, измеряя температуру реликтового излучения вселенной в разных точках неба и сопоставляя эти температуры между собой. 

Второй из этих параметров называется тензорно-скалярным соотношением. Это отношение амплитуд гравитационных волн к плотностям материи, которые возникают вследствие инфляции. Он показывает, насколько сильно инфляционное расширение вселенной создает гравитационные волны по сравнению с тем, как их создает сама материя. Большое значение этого параметра означает, что космическая инфляция происходила в условиях, в которых на формирование вселенной огромную роль оказывают возникающие вследствие инфляции гравитационные волны. Если же этот параметр близок к нулю, то влиянием гравитационных волн можно пренебречь. 

Оба параметра могут быть оценены с помощью данных наблюдений за реликтовым излучением. В результате моделирования оказалось, что при N = 70 для первой модели существуют значения параметров, при которых модель совпадает с наблюдениями. Оставшиеся две модели совсем не дали совпадения. 

«Исследованные нами модели представляют собой любопытные примеры инфляционных сценариев, основанных на квантовых эффектах. Первая модель, в частности, демонстрирует обещающий подход к объяснению инфляции, основываясь на простых предположениях, при этом обеспечивая согласие с наблюдаемыми данными, — рассказал Андрей Арбузов, первый автор статьи, начальник сектора №5 Лаборатории теоретиче��кой физики им. Н.Н. Боголюбова ОИЯИ (Дубна). — Мы надеемся, что наши выводы будут способствовать дальнейшим исследовательским усилиям в области квантовой гравитации и расширят наше понимание космологических процессов».