
Дайджест новостей из мира PostgreSQL

Друзья! Мы решили запустить дайджест свежих новостей, статей, релизов и событий из мира PostgreSQL, который будет выходить раз в две недели. В подборке вы найдете ссылки на наиболее интересные материалы по PostgreSQL, вышедшие за период. Если мы пропустили что-то важное для вас – пишите в комментариях!
Релизы
- Вышел Postgres Pro Standard 10.1.1. В эту версию перенесены все ключевые доработки и новые возможности СУБД Postgres Pro Standard 9.6, исправлены некоторые найденные ошибки. Также вышла сборка PostgreSQL 10.1 под Windows
- Вышла версия PgBouncer 1.8.1. Исправлена ошибка в 1.8: добавлен недостающий файл, теперь PgBouncer без проблем собирается из тарбола.
- Появилась версия драйвера psqlODBC 10.01.0000. Некоторые поправки и усовершенствования по сравнению с версией 10.00.0000. Например, ликвидированы утечки памяти.
Статьи
- В статье Jsonb: few more stories about the performance
Дмитрий Долгов (Zalando) обнародовал производительность PostgreSQL, MySQL и MongoDB на тестах YCSB. Сравнивалась производительность обработки бинарных JSON-ов (JSONB и BSON). Методика тестирования (в облаке) расписана подробно, есть выводы и рекомендации.
До этого тема обсуждалась на PGConf.EU 2017 в Варшаве и на других конференциях. Например, в презентации Олега Бартунова по результатам YCSB-тестирования в Postgres Professional (слайд 81 и далее). В этих тестах на выделенных мощных серверах сравнивались только MongoDB и PostgreSQL, а акцент был сделан на высокую нагрузку (тысячи клиентов одновременно).
Индексы в PostgreSQL — 8
Мы уже рассмотрели механизм индексирования PostgreSQL, интерфейс методов доступа и все основные методы доступа, как то: хеш-индексы, B-деревья, GiST, SP-GiST и GIN. А в этой части посмотрим на превращение джина в ром.
RUM
Хоть авторы и утверждают, что джин — могущественный дух, но тема напитков все-таки победила: GIN следующего поколения назвали RUM.
Этот метод доступа развивает идею, заложенную в GIN, и позволяет выполнять полнотекстовый поиск еще быстрее. Это единственный метод в этой серии статей, который не входит в стандартную поставку PostgreSQL и является сторонним расширением. Есть несколько вариантов его установки:
- Взять пакет yum или apt из репозитория PGDG. Например, если вы ставили PostgreSQL из пакета postgresql-10, то поставьте еще postgresql-10-rum.
- Самостоятельно собрать и установить из исходных кодов на github (инструкция там же).
- Пользоваться в составе Postgres Pro Enterprise (или хотя бы читать оттуда документацию).
Ограничения GIN
Какие ограничения индекса GIN позволяет преодолеть RUM?
Во-первых, тип данных tsvector, помимо самих лексем, содержит информацию об их позициях внутри документа. В GIN-индексе, как мы видели в прошлый раз, эта информация не сохраняются. Из-за этого операции фразового поиска, появившиеся в версии 9.6, обслуживается GIN-индексом неэффективно и вынуждены обращаться к исходным данным для перепроверки.
Во-вторых, поисковые системы обычно возвращают результаты в порядке релевантности (что бы это ни означало). Для этого можно пользоваться функциями ранжирования ts_rank и ts_rank_cd, но их приходится вычислять для каждой строки результата, что, конечно, медленно.
Метод доступа RUM в первом приближении можно рассматривать как GIN, в который добавлена позиционная информация, и который поддерживает выдачу результата в нужном порядке (аналогично тому, как GiST умеет выдавать ближайших соседей). Пойдем по порядку.
Разбор задач викторины Postgres Pro на Highload++ 2017
В этой статье разбираются вопросы викторины.

Индексы в PostgreSQL — 7
Мы уже познакомились с механизмом индексирования PostgreSQL и с интерфейсом методов доступа, и рассмотрели хеш-индексы, B-деревья, индексы GiST и SP-GiST. А в этой части займемся индексом GIN.
GIN
— Джин?.. Джин — это, кажется, такой американский спиртной напиток?..
— Не напиток я, о пытливый отрок! — снова вспылил старичок, снова спохватился и снова взял себя в руки. — Не напиток я, а могущественный и неустрашимый дух, и нет в мире такого волшебства, которое было бы мне не по силам.
Лазарь Лагин, «Старик Хоттабыч».
Gin stands for Generalized Inverted Index and should be considered as a genie, not a drink.
README
Общая идея
GIN расшифровывается как Generalized Inverted Index — это так называемый обратный индекс. Он работает с типами данных, значения которых не являются атомарными, а состоят из элементов. При этом индексируются не сами значения, а отдельные элементы; каждый элемент ссылается на те значения, в которых он встречается.
Хорошая аналогия для этого метода — алфавитный указатель в конце книги, где для каждого термина приведен список страниц, где этот термин упоминается. Как и указатель в книге, индексный метод должен обеспечивать быстрый поиск проиндексированных элементов. Для этого они хранятся в виде уже знакомого нам B-дерева (для него используется другая, более простая, реализация, но в данном случае это несущественно). К каждому элементу привязан упорядоченный набор ссылок на строки таблицы, содержащие значения с этим элементом. Упорядоченность не принципиальна для выборки данных (порядок сортировки TID-ов не несет в себе особого смысла), но важна с точки зрения внутреннего устройства индекса.
Различия Postgres Pro Enterprise и PostgreSQL
1. Кластер multimaster
Расширение
multimaster и его поддержка в ядре, которые есть только в версии Postgres Pro Enterprise, дают возможность строить кластеры серверов высокой доступности (High Availability). После каждой транзакции гарантируется глобальная целостность (целостность данных в масштабах кластера), т.е. на каждом его узле данные будут идентичны. При этом легко можно добиться, чтобы производительность по чтению масштабировалась линейно с ростом количества узлов. Индексы в PostgreSQL — 6
Мы уже рассмотрели механизм индексирования PostgreSQL, интерфейс методов доступа и три метода: хеш-индекс, B-дерево и GiST. В этой части речь пойдет о SP-GiST.
SP-GiST
Вначале немного о названии. Слово «GiST» намекает на определенную схожесть с одноименным методом. Схожесть действительно есть: и тот, и другой — generalized search trees, обобщенные деревья поиска, предоставляющие каркас для построения разных методов доступа.
«SP» расшифровывается как space partitioning, разбиение пространства. В роли пространства часто выступает именно то, что мы и привыкли называть пространством — например, двумерная плоскость. Но, как мы увидим, имеется в виду любое пространство поиска, по сути произвольная область значений.
SP-GiST подходит для структур, в которых пространство рекурсивно разбивается на непересекающиеся области. В этот класс входят деревья квадрантов (quadtree), k-мерные деревья (k-D tree), префиксные деревья (trie).
Что умеет планировщик заданий в Postgres Pro
PostgreSQL, будучи Open Source и впитав традиции сообщества с образом жизни DIY («сделай сам»), в наше время регулярно претендует на место как минимум заместителя коммерческой СУБД. Из этого автоматически следует, что PostgreSQL просто обязана иметь планировщик, и что этот планировщик должен быть удобен для администратора базы и для пользователя.
Разбор задач викторины Postgres Pro на PGDay'17
Индексы в PostgreSQL — 5
В прошлые разы мы рассмотрели механизм индексирования PostgreSQL, интерфейс методов доступа, и два метода: хеш-индекс и B-дерево. В этой части займемся индексами GiST.
GiST
GiST — сокращение от «generalized search tree». Это сбалансированное дерево поиска, точно так же, как и рассмотренный ранее b-tree.
В чем же разница? Индекс b-tree жестко привязан к семантике сравнения: поддержка операторов «больше», «меньше», «равно» — это все, на что он способен (зато способен очень хорошо!). Но в современных базах хранятся и такие типы данных, для которых эти операторы просто не имеют смысла: геоданные, текстовые документы, картинки…
Тут на помощь и приходит индексный метод GiST. Он позволяет задать принцип распределения данных произвольного типа по сбалансированному дереву, и метод использования этого представления для доступа по некоторому оператору. Например, в GiST-индекс можно «уложить» R-дерево для пространственных данных с поддержкой операторов взаимного расположения (находится слева, справа; содержит и т. п.), или RD-дерево для множеств с поддержкой операторов пересечения или вхождения.
За счет расширяемости в PostgreSQL вполне можно создать совершенно новый метод доступа с нуля: для этого надо реализовать интерфейс с механизмом индексирования. Но это требует продумывания не только логики индексации, но и страничной структуры, эффективной реализации блокировок, поддержки журнала упреждающей записи — что подразумевает очень высокую квалификацию разработчика и большую трудоемкость. GiST упрощает задачу, беря на себя низкоуровневые проблемы и предоставляя свой собственный интерфейс: несколько функций, относящихся не к технической сфере, а к прикладной области. В этом смысле можно говорить о том, что GiST является каркасом для построения новых методов доступа.
Индексы в PostgreSQL — 4
Мы уже рассмотрели механизм индексирования PostgreSQL и интерфейс методов доступа, а также один из методов доступа — хеш-индекс. Сейчас поговорим о самом традиционном и используемом индексе — B-дереве. Глава получилась большой, запасайтесь терпением.
Btree
Устройство
Индекс btree, он же B-дерево, пригоден для данных, которые можно отсортировать. Иными словами, для типа данных должны быть определены операторы «больше», «больше или равно», «меньше», «меньше или равно» и «равно». Заметьте, что одни и те же данные иногда можно сортировать разными способами, что возвращает нас к концепции семейства операторов.
Индексы в PostgreSQL — 3
В первой статье мы рассмотрели механизм индексирования PostgreSQL, во второй — интерфейс методов доступа, и теперь готовы к разговору о конкретных типах индексов. Начнем с хеш-индекса.
Hash
Устройство
Общая теория
Многие современные языки программирования включают хеш-таблицы в качестве базового типа данных. Внешне это выглядит, как обычный массив, но в качестве индекса используется не целое число, а любой тип данных (например, строка). Хеш-индекс в PostgreSQL устроен похожим образом. Как это работает?
Как правило, типы данных имеют очень большие диапазоны допустимых значений: сколько различных строк можно теоретически представить в столбце типа text? В то же время, сколько разных значений реально хранится в текстовом столбце какой-нибудь таблицы? Обычно не так много.
Идея хеширования состоит в том, чтобы значению любого типа данных сопоставить некоторое небольшое число (от 0 до N−1, всего N значений). Такое сопоставление называют хеш-функцией. Полученное число можно использовать как индекс обычного массива, куда и складывать ссылки на строки таблицы (TID). Элементы такого массива называют корзинами хеш-таблицы — в одной корзине могут лежать несколько TID-ов, если одно и то же проиндексированное значение встречается в разных строках.
Хеш-функция тем лучше, чем равномернее она распределяет исходные значения по корзинам. Но даже хорошая функция будет иногда давать одинаковый результат для разных входных значений — это называется коллизией. Так что в одной корзине могут оказаться TID-ы, соответствующие разным ключам, и поэтому полученные из индекса TID-ы необходимо перепроверять.
Индексы в PostgreSQL — 2
Интерфейс
В первой части мы говорили о том, что метод доступа должен предоставлять информацию о себе. Посмотрим, как устроен этот интерфейс.
Свойства
Все свойства методов доступа представлены в таблице pg_am (am — access method). Из этой таблицы можно получить и сам список доступных методов:
postgres=# select amname from pg_am;
amname
--------
btree
hash
gist
gin
spgist
brin
(6 rows)
Хотя к методам доступа можно с полным правом отнести и последовательное сканирование, исторически сложилось так, что оно отсутствует в этом списке.
В версиях PostgreSQL 9.5 и более старых каждое свойство было представлено отдельным полем таблицы pg_am. Начиная с версии 9.6 свойства опрашиваются специальными функциями и разделены на несколько уровней:
- свойства метода доступа — pg_indexam_has_property,
- свойства конкретного индекса — pg_index_has_property,
- свойства отдельных столбцов индекса — pg_index_column_has_property.
Разделение на уровни метода доступа и индекса сделано с прицелом на будущее: в настоящее время все индексы, созданные на основе одного метода доступа, всегда будут иметь одинаковые свойства.
Индексы в PostgreSQL — 1
Предисловие
В этой серии статей речь пойдет об индексах в PostgreSQL.
Любой вопрос можно рассматривать с разных точек зрения. Мы будем говорить о том, что должно интересовать прикладного разработчика, использующего СУБД: какие индексы существуют, почему в PostgreSQL их так много разных, и как их использовать для ускорения запросов. Пожалуй, тему можно было бы раскрыть и меньшим числом слов, но мы втайне надеемся на любознательного разработчика, которому также интересны и подробности внутреннего устройства, тем более, что понимание таких подробностей позволяет не только прислушиваться к чужому мнению, но и делать собственные выводы.
За скобками обсуждения останутся вопросы разработки новых типов индексов. Это требует знания языка Си и относится скорее к компетенции системного программиста, а не прикладного разработчика. По этой же причине мы практически не будем рассматривать программные интерфейсы, а остановимся только на том, что имеет значение для использования уже готовых к употреблению индексов.
В этой части мы поговорим про разделение сфер ответственности между общим механизмом индексирования, относящимся к ядру СУБД, и отдельными методами индексного доступа, которые в PostgreSQL можно добавлять как расширения. В следующей части мы рассмотрим интерфейс метода доступа и такие важные понятия, как классы и семейства операторов. После такого длинного, но необходимого введения мы подробно рассмотрим устройство и применение различных типов индексов: Hash, B-tree, GiST, SP-GiST, GIN и RUM, BRIN и Bloom.
Примеры реальных патчей в PostgreSQL: часть 3 из N

Сегодня я хотел бы вновь рассказать о некоторых патчах, принятых за последнее время в PostgreSQL (а также утилиту pg_filedump). Аналогичные статьи, опубликованные на Хабре ранее, набрали достаточно много плюсиков, что заставляет думать, что они представляют для кого-то интерес. Если вы пропустили предыдущие статьи, вот они — раз, два, три. Несмотря на то, что рассмотренные патчи были написаны мной, не стоит забывать о вкладе людей, которые их ревьювили и тестировали. Проделанная этими людьми работа зачастую оказывается больше и сложнее работы самого автора. Особо активное участие в разработке рассмотренных пачтей приняли Федор Сигаев, Robert Haas, Tom Lane, Дмитрий Иванов, Григорий Смолкин, Andres Freund, Анастасия Лубенникова и Tels.
Еще одна новая фича pg_filedump: восстанавливаем каталог PostgreSQL

В прошлой статье мы узнали, как при помощи утилиты pg_filedump можно восстановить данные, или, по крайней мере, какую-то их часть, из полностью убитой базы PostgreSQL. При этом предполагалось, что мы откуда-то знаем номера сегментов, соответствующих таблице. Если мы знаем часть содержимого таблицы, ее сегменты действительно не сложно найти, например, простым grep'ом. Однако в более общем случае это не так-то просто сделать. К тому же, предполагалось, что мы знаем точную схему таблиц, что тоже далеко не факт. Так вот, недавно мы с коллегами сделали новый патч для pg_filedump, позволяющий решить названные проблемы.
PgConf.Russia 2017 — приглашаем на мартовскую конференцию в Москве
В марте в Москве в третий раз пройдет международная конференция PgConf.Russia. В первый раз конференция собрала около 460 участников, во второй — около 600, на те моменты времени это было мировым рекордом для мероприятий, посвященных PostgreSQL, что наряду с высокой информационной насыщенностью программы подтверждает огромный интерес к этой СУБД в России.
Пример восстановления таблиц PostgreSQL с помощью новой мега фичи pg_filedump

Позвольте я расскажу вам об одной классной фиче, которую мы с коллегами из Postgres Pro недавно запилили в утилите pg_filedump. Фича эта позволяет частично восстанавливать данные из базы, даже в случае, если база была сильно повреждена и инстанс PostgreSQL с такой базой уже не запустишь. Конечно, хочется верить, что потребность в таком функционале возникает крайне редко. Но на всякий случай нечто подобное хотелось бы иметь под рукой. Читайте дальше, и вы узнаете, как данная фича выглядит в действии.
И снова о рекурсивных запросах
Начнем с того, что повторим теорию (очень кратко, потому что с ней все ясно), а затем поговорим о том, что делать, если непонятно, как подступиться к реальной задаче, или вроде бы понятно, но запрос упорно не хочет работать.
Для упражнения будем использовать демо-базу, подробно описанную ранее, и попробуем написать в ней запрос для поиска кратчайшего пути из одного аэропорта в другой.
Информация
- Дата регистрации
- Дата основания
- Численность
- 501–1 000 человек
- Местоположение
- Россия
- Представитель
- Иван Панченко