Интерес к технологиям Big Data постоянно растет, а сам термин приобретает все большую популярность, многие люди хотят поговорить об этом, обсудить перспективы и возможности в этой области. Однако немногие конкретизируют — какие компании представлены на этом рынке, не описывают решения этих компаний, а также не рассказывают про методы, лежащие в основе решений Big Data. Область информационных технологий, относящихся к хранению и обработке данных, претерпела существенные изменения к настоящему моменту и представляет собой стремительно растущий рынок, а значит лакомый кусок для многих всемирно известных и небольших, только начинающих, компаний в этой сфере. У типичной крупной компании имеется несколько десятков оперативных баз данных, хранящих данные об оперативной деятельности компании (о сделках, запасах, остатках и т.п.), которые необходимы аналитикам для бизнес-анализа. Так как сложные, непредвиденные запросы могут привести к непредсказуемой нагрузке на оперативные базы данных, то запросы аналитиков к таким базам данных стараются ограничить. Кроме того, аналитикам необходимы исторические данные, а также данные из нескольких источников. Для того чтобы обеспечить аналитикам доступ к данным, компании создают и поддерживают так называемые хранилища данных, представляющие собой информационные корпоративные базы данных, предназначенные для подготовки отчетов, анализа бизнес-процессов и поддержки системы принятия решений. Хранилища данных служат также источником для оценки эффективности маркетинговых кампаний, прогнозированию, поиску новых возможных рынков и аудиторий для продажи, всевозможному анализу предыдущих периодов деятельности компаний. Как правило, хранилище данных – это предметно-ориентированная БД, строящаяся на временной основе, т.е. все изменения данных отслеживаются и регистрируются по времени, что позволяет проследить динамику событий. Также хранилища данных хранят долговременные данные — это означает, что они никогда не удаляются и не переписываются – вносятся только новые данные, это необходимо для изучения динамики изменения данных во времени. И последнее, хранилища данных, в большинстве случае, консолидированы с несколькими источниками, т.е. данные попадают в хранилище данных из нескольких источников, причем, прежде чем попасть в хранилище данных, эти данные проходят проверку на непротиворечивость и достоверность.

113.66
Рейтинг
Big Data *
Большие данные и всё о них
Сначала показывать
Порог рейтинга
Уровень сложности
Мифология Data Science
6 мин
23K
The future belongs to the companies and people that turn data into products
Человечество никогда не стояло на месте – суровый закон выживания постоянно заставлял его двигаться вперед. В истории развития человечества революции происходили всегда – одно общество сменялось другим, а устаревшие технологии заменялись более прогрессивными. Последняя информационная революция связана с появлением персональных компьютеров в 80-е годы ХХ века.
+14
Соединение исторических таблиц
5 мин
7.5KВремя от времени мне приходится сталкиваться с задачами, когда нужно в рамках имеющейся СУБД выполнить соединение двух и более исторических таблиц между собой, да так, чтобы получить красивые исторические интервалы на выходе. Зачем? Чтобы отчет смог правильно отобразить данные на выбранную пользователем дату, или приложение подтянуло в себя эти данные для обработки.
Часто коллеги и братья по цеху сталкиваются с подобными задачами и советуются как лучше их решить.
В этой статье я хочу поделиться опытом как решались различные ситуации подобного типа.
Часто коллеги и братья по цеху сталкиваются с подобными задачами и советуются как лучше их решить.
В этой статье я хочу поделиться опытом как решались различные ситуации подобного типа.
+4
Вклад авторов
moat 815.0Aleron75 528.0Syurmakov 524.4alexanderkuk 501.03Dvideo 490.0i_shutov 488.0m31 483.2shukshinivan 460.0s_valuev 446.0o6CuFl2Q 445.0