Группа исследователей из компании Hugging Face и Университета Карнеги-Меллона опубликовала результаты анализа энергопотребления при выполнении различных моделей машинного обучения.
Наиболее энергозатратными оказались модели машинного обучения, обеспечивающие генерацию изображений, а наименее затратными — классификации текста. Средние показатели энергопотребления моделей генерации изображений примерно в 1500 раз выше, чем классификации текста, и в 60 раз выше генерации текста.
Например, выполнение 1000 итераций наиболее энергозатратной модели генерации изображений потребовало 11,49 кВт*ч энергии, что соответствует 950 зарядам аккумулятора смартфона, то есть одна генерация изображения по энергопотреблению соответствует примерно одной средней ежедневной зарядке смартфона (0,012 кВт*ч).
Потребление наиболее энергоэффективной модели генерации изображений составило 1,35 кВт*ч на 1000 итераций, что в 8 раз лучше наименее эффективной модели. Тем не менее, эти показатели значительно выше, чем у других видов моделей, например 1000 итераций наиболее эффективной модели генерации текста потребляет 0,042 кВт*ч, классификации изображений — 0,0068 кВт*ч, а классификации текста — 0,0023 кВт*ч.

Источник: OpenNET.