Как стать автором
Поиск
Написать публикацию
Обновить

Sapient представил HRM — ИИ-модель, имитирующую структуру мышления человека

Сингапурский стартап Sapient Intelligence выпустил в открытый доступ Hierarchical Reasoning Model (HRM) — архитектуру нейросети, основанную на принципах работы человеческого мозга. Модель с 27 миллионами параметров обучается на 1000 примерах и превосходит крупные языковые модели в задачах логического мышления.

Архитектура системы

HRM состоит из двух связанных рекуррентных модулей: высокоуровневого (H) для абстрактного планирования и низкоуровневого (L) для быстрых детальных вычислений. Такая структура позволяет избежать быстрой сходимости стандартных архитектур.

Принцип работы основан на двух типах мышления:

  • Абстрактное планирование — формирует общую стратегию решения

  • Детальные вычисления — обрабатывает конкретные операции и нюансы

Архитектура вдохновлена тем, как человеческий мозг использует отдельные системы для медленного обдуманного планирования и быстрых интуитивных вычислений. Это кардинально отличается от chain-of-thought подхода современных LLM.

Результаты тестирования

Модель достигает практически идеальных результатов, используя всего 27 миллионов параметров и около 1000 обучающих примеров без предобучения. Для сравнения — GPT-4 содержит триллионы параметров.

Benchmark ARC-AGI (оценка общего интеллекта):

  • Sapient HRM — 40,3%

  • o3-mini-high — 34,5%

  • Claude Sonnet — 21,2%

  • DeepSeek-R1 — 15,8%

Система превзошла ведущие LLM в сложном для ИИ бенчмарке, который считается одним из наиболее требовательных тестов рассуждения.

Технические преимущества

Эффективность обучения: Модель требует в разы меньше данных и памяти по сравнению с современными LLM. Это решает проблему растущих требований к вычислительным ресурсам.

Специализация задач: Иерархическая структура позволяет оптимизировать обработку разных типов задач — от судоку и лабиринтов до стратегического планирования.

Стабильность обучения: Архитектура обеспечивает устойчивость тренировки при значительной вычислительной глубине.

Практическое применение

HRM показывает эффективность в задачах, требующих пошагового логического анализа:

  • Решение головоломок и математических задач

  • Навигация в сложных средах

  • Стратегическое планирование

  • Анализ паттернов и закономерностей

Код модели опубликован на GitHub, что позволяет исследователям воспроизвести результаты и развивать архитектуру.

Значение для отрасли

Если результаты Sapient подтвердятся независимыми исследованиями, это может изменить вектор развития ИИ. Вместо наращивания параметров и данных фокус сместится на архитектурные инновации, вдохновленные нейробиологией.

Подход демонстрирует альтернативу гонке масштабирования — создание специализированных, эффективных моделей для конкретных классов задач.

Теги:
+6
Комментарии0

Публикации

Ближайшие события