Обновить
Страховой Дом ВСК
Более 30 лет на рынке страхового бизнеса

OutBoxML: как мы построили свою ML‑платформу от архитектуры до продакшена

Если вы хоть раз выводили ML‑модель в прод, то знаете этот сценарий.

Папки final_final_v2, десятки Python‑скриптов, неотслеженные версии данных, ручной деплой на сервер, и тревожное чувство, что «где‑то что‑то точно отвалится».

Со временем даже хорошо построенный ML‑процесс превращается в хаос — набор несовместимых пайплайнов и моделей, где каждый инженер решает задачу по‑своему.

Мы столкнулись с этим тоже. Но вместо того чтобы латать процессы по частям, мы решили построить собственную ML‑платформу OutBoxML — систему, которая централизует всё: от обучения и управления фичами до продакшн‑деплоя и мониторинга качества моделей.

OutBoxML — это не концепция на слайдах, а реальный проект, который мы внедрили в продакшн, чтобы стабилизировать и масштабировать ML во всём ИТ‑контуре Страхового Дома ВСК.

В серии из трёх статей на Хабре наши инженеры подробно разбирают, как мы прошли путь от архитектуры до продакшена, какие решения приняли — и какие ошибки помогли нам вырасти.

Решение: платформа OutBoxML

Мы не остановились на обёртках вокруг сторонних инструментов — мы создали OutBoxML: платформу, способную управлять жизненным циклом моделей от разработки до стабильного продакшена.

Мы шаг за шагом описываем во всех трёх статьях, как родилась архитектура, как устроен компонент работы с признаками и как устроена надёжность при выводе моделей.

Часть 1: Библиотека OutboxML от Страхового Дома ВСК

В первой статье мы показываем конструкцию ядра OutBoxML и обоснование архитектурных подходов.

Ключевой технический инсайт: мы ушли от монолитных систем и отдали предпочтение сервисам с чёткими границами ответственности, использованию событийной коммуникации и контейнеризации.

Мы описываем принципы маршрутизации данных, версионирования и взаимодействия между сервисами, а также как обеспечиваем воспроизводимость экспериментов.

Часть 2: Автоматизированное машинное обучение с помощью нашего Open Source фреймворка: задача о Титанике

В следующее статье мы разбирали моменты, в которых классический ML выигрывает у сложных нейросетей, на примере страховой индустрии.

К тому же обсудили как мы автоматизировали обучение и инференс моделей с помощью OutBoxML и модульную архитектура и гибкие настройки процессов.

Часть 3: Data Drift в ML Страхового Дома ВСК: от PSI‑анализа до пересборки фичей и сравнения моделей

Машинное обучение в страховании — это не только про красивые метрики на этапе тестирования. Самая большая проблема приходит позже, когда модель выходит «в прод»: данные начинают меняться, и точность предсказаний падает. Это яв��ение называется Data Drift. В статье мы делимся практическим опытом:

  • как диагностировать дрифт с помощью PSI‑метрики;

  • как использовать SHAP‑анализ для переосмысления модели;

  • чем отличается модель «с дрифтом» от модели «без дрифта» на реальных страховых данных.

Мы показываем не теорию, а эксперимент с открытым кодом и цифрами: какие признаки пришлось исключить, как изменилась логика модели и что это дало бизнесу на практике.

Совсем скоро выйдет заключительная статья нашего первого цикла open source проекта OutBoxML!

Присоединяйтесь к нашему проекту на GitHub и в Telegram. К тому же, библиотека опубликована в pypi и доступна к установке через pip install outboxml

Пишите в комментариях, о каких аспектах автоматизации ML вам хотелось бы узнать подробнее. Удачи в реализации ваших проектов!

Теги:
Всего голосов 1: ↑1 и ↓0+3
Комментарии0

Публикации

Информация

Сайт
www.vsk.ru
Дата регистрации
Дата основания
Численность
5 001–10 000 человек
Местоположение
Россия