Если ты — Automation QA и хочешь перейти в мир обеспечения качества AI-приложений*, как это сделала я, то мой путь может послужить небольшой дорожной картой.
*не путать с использованием AI-инструментов для тестирования классических приложений

Некоторое время назад я решила сменить вектор развития. Это не произошло в одночасье; это был осознанный, местами трудный, но невероятно вдохновляющий процесс.
Вот как я восполняла пробелы в знаниях:
Временные затраты
Около 7 месяцев изучения теории и параллельно более года практического опыта. Этот год я провела, участвуя в стартап-проектах (в основном в роли QA Lead), что дало мне «безопасную песочницу» для применения знаний в области ML на реальных практических задачах.
Переход на Python
Java — отличный язык, но в экосистеме ML/AI «лингва франка» — это Python. Библиотеки для работы с моделями, статистикой, метриками и трансформерами здесь есть на любой вкус и цвет. Так что, если ты Java QA, стоит сменить Java на Python.
Создание теоретической базы
Нельзя оценивать то, чего не понимаешь. Мне пришлось изучать, как модели строятся с нуля, чтобы понять, как их измерять.
Этот бесплатный англоязычный курс был действительно отличным, интересным и захватывающим — спасибо, Dr. Raj Abhijit Dandekar!
Мое прошлое обучение в аспирантуре по прикладной лингвистике здесь немного помогло, но кое-где математика и архитектура стали новым вызовом.
Кроме того, я изучила множество других материалов (например) и, конечно, много общалась с «железным другом» Gemini. :)
Практика на рынке
Сейчас в найме непростые времена, но я решила рассматривать это как бесплатное обучение. Параллельно со своим «апгрейдом» я выполнила около 10 технических тестовых заданий для потенциальных работодателей. Даже те задания, которые не привели к офферу, добавили в мой арсенал новую метрику или технику оценки.
оригинальные посты выходят в Linkedin (англ.)
