Как стать автором
Обновить

Доказательство Гипотезы Римана

Гипотеза Римана это математическая гипотеза, выведенная в 1859 году Бернхардом Риманом. И которая до сих пор не была решена.

Гипотеза Римана звучит так:
Все нетривиальные нули дзета-функции имеют действительную часть равную 1/2.
Мне удалось доказать это утверждение. Мои выводы основываются на резултате фон Коха 1901 года.

Если Гипотеза Римана верна, то

π(x) = Li(x) + Ο(√x∙ln x)

Гипотеза Римана имеет большое значение в квантовой механике, а также в криптографии.

Формула π(x) и Li(x)


В данном разделе я представлю две формулы с помощью которых я доказал Гипотезу Римана. Это новая формула функции π(x) и новый метод интегрирования функции 1/ln(x).

Функция π(x) показывает сколько в данном числе x простых чисел. Простые числа — это числа, которые делятся только на себя и на единицу. Например: 2 3 5 7…

Формула функции π(x).:
image
(1.1)
Доказательство:

Эта формула исключает из данного числа x все не простые числа, по правилам решета Эратосфена. Решето Эретосфена это метод, придуманный Эратосфеном Киренским для определения последовательности простых чисел. Алгоритм таков, если взять ряд из натуральных чисел без единицы

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18…

и исключить из него все четные числа, кроме самой маленькой из них, т.е. двойки, получится:

2 3 5 7 9 11 13 15 17…

А потом из этой получившейся последовательности исключить все числа которые делятся на следующее простое число после двойки, это число 3, не считая ее самой. Получится:

2 3 5 7 11 13 17…

Если так делать до бесконечности, то останутся только простые числа. Моя формула работает по такому принципу. Сначала формула исключает единицу из данного числа x, а потом количество всех четных чисел, кроме 2. Далее количество чисел, которые делятся на 3, кроме тройки, а из данного количества исключаются четные числа, которые которые делятся на 3 и т.д.
fn(x) обозначает самое минимальное число, которое надо исключить из x, чтобы получилось то число которое делится на n без остатка.

График функции fn(x):

image
Рис.(1.1) График функции fn(x)

Область определения функции

image

Область значения

image

Каждое выражение в скобках содержит количество определенных не простых чисел не превосходящих x.

Рано или позно определенное выражение в скобках формулы π(x) будет равна нулю (1.1). Поэтому данная сумма не бесконечна.

Я не могу доказать математически формулу (1.1), но можно понять, что формула верна, исходя из того что ее функция напоминает решето Эретосфена. Можно сказать, что эта формула-аналитический вариант решета Эретосфена.

Формула функции Li(x):

image

(1.2)
Доказательство:

Все члены этой суммы это площадь прямоугольника под графиком функции 1/ln(x), бесконечное количество площадей прямоугольников сходятся к площади под графиком функции 1/ln(x), начиная с аргумента 2. А так как функция Li(x) это интеграл графика функции 1/ln(x), то формула (1.2) равна Li(x).

image
Рис.(1.2) Прямоугольники под графиком функции 1/ln(x)

image

Верхний правый угол всех прямоугольников лежат на определенной точке графика, а так как прямоугольников бесконечно много, то углы прямоугольников охватывают все точки графика от 1/ln(2) до 1/ln(x).

Доказательство


Итак, если Гипотеза Римана верна то

π(x) = Li(x) + Ο(√x∙ln x)

А если переделать это выражение то получится, что

image

То есть, если доказать это неравенство то получится что Гипотеза Римана верна.
Подставив подставив выведенные формулы в неравенство получим:

image
(1.3) Остаточный член

То есть

image
(1.4)

При условии что x>2.Преобразуем это выражение, для упрощения.

image

Из этого можно сделать вывод что, если неравенство

image
(1.5)

верное, то и Гипотеза Римана верна. Проверем это. Если перенести все члены неравенства (1.5) в правую часть неравенства, то получится

image
(1.6)

Первая разность этого выражения, при x>2, всегда отрицательна. А вторая разность отрицательна приблизительно лишь при x>10, но это не страшно, так как нас интересуют только большие аргументы, выражение (1.6) все равно будет верное.

Неравенство (1.6) верное, значит и неравенство

image

тоже верное.

Гипотеза Римана доказана.
Теги:
Хабы:
Данная статья не подлежит комментированию, поскольку её автор ещё не является полноправным участником сообщества. Вы сможете связаться с автором только после того, как он получит приглашение от кого-либо из участников сообщества. До этого момента его username будет скрыт псевдонимом.