Как стать автором
Обновить
9
Карма
0
Рейтинг

Пользователь

  • Подписчики 1
  • Подписки 2

Исследование качественных особенностей динамики математических моделей нелинейных неавтономных систем

Разобрался: комбинация Markdown и MathJax требуют более аккуратного использования символов _ и *

Исследование качественных особенностей динамики математических моделей нелинейных неавтономных систем

Хороший вопрос. В предпросмотре все корректно, но после F5 большая часть формул не отображается. Формат выражений 5 раз перепроверил.

Теоретически возможные космические мегаструктуры

> Вероятность естественного происхождения подобного набора исчезающе мала.
А если умножить исчезающе малую вероятность на количество звездных систем, да еще учесть время существования таких образований, то и получим вполне нормальную вероятность естественного происхождения.

Программа-помощник для освоения слепой печати на клавиатуре в Linux

На мой взгляд, лучшая программа для обучения слепой печатью — Соло на клавиатуре. Производитель отечественный, стоит совсем не дорого, есть онлайн версия. Когда захотел освоить слепую печать, начал заниматься сначала по книге, потом сам написал небольшую прогу — чтобы задания из книги выполнять. А уже потом нашел готовое решение.

ИТ-инфраструктура одной государственной бюджетной образовательной организации

Программисты не входят в IT-отдел или их вообще нет в организации?
Если их нет, то, если не секрет, расскажите как организована работа приемной комиссии, какая используется система учета студентов?

Идеальный смартфон, какой он?

А я думал что я один такой динозавр остался, которому нужны кнопки)
Интересно, почему производители стремятся избавится от кнопок?

Гарантии получения корректного результата при расчете динамических систем

Книга доступна во всех крупных библиотеках России. А также в библиотеке СПбГУ «ЛЭТИ» и ряде других вузов.

Гарантии получения корректного результата при расчете динамических систем

Рад что удалось разобраться в чем была причина расхождения результатов.

Гарантии получения корректного результата при расчете динамических систем

Попробовал пройти назад, как делали Вы. Расчет прошел успешно от t = 6.827 до t = 0.
Что примечательно, если в качестве предначальных условий взять округленные до 6 знака после запятой значения, полученные при прямом расчете, то x(t) действительно становится неустойчивым в районе t = 5.4.
Но, если задавать предначальные условия не округленными, а точно такими, какими они были получены, расчет идет нормально до t = 0.

Гарантии получения корректного результата при расчете динамических систем

Полностью согласен. И когда плотно занимался анализом даже находил примеры ОДУ, для которых пакеты находили некорректное решение.
Но для проверки собственных вычислений нужно же чем-то пользоваться.

Гарантии получения корректного результата при расчете динамических систем

Провел расчеты в Maple 17. Результат аналогичен моему:
Digits := 180
l1 := diff(x(t), t) = sigma*(y(t)-x(t));
l2 := diff(y(t), t) = ro*x(t)-y(t)-x(t)*z(t);
l3 := diff(z(t), t) = x(t)*y(t)-beta*z(t);
sigma := 10;
ro := 28;
beta := 8/3;
ics := x(0) = 13.41265629, y(0) = 13.46430003, z(0) = 33.46156416;
sol := dsolve([l1, l2, l3, ics], [x(t), y(t), z(t)], numeric, method = taylorseries)
sol(6.827);
[t = 6.827,
x(t) = 13.359519...,
y(t) = 13.3786456...,
z(t) = 33.4297499...]

Гарантии получения корректного результата при расчете динамических систем

Забыл предупредить — в исходниках, в комментариях, может присутствовать ненормативная лексика.

Гарантии получения корректного результата при расчете динамических систем

В программе используется библиотека символьных вычислений GiNaC.
Исходный код ядра программы, в котором реализованы формализованные процедуры аналитически-численного метода, залил на гитхаб: anm
Преобразование в double используется только при построении графиков. При расчетах нигде не используется.
Статей, опубликованных в онлайн по этой теме нет.

Гарантии получения корректного результата при расчете динамических систем

По поводу возвращения в окрестность начального положения — вероятно, я не прав. С работой В.В. Немыцкого и В.В. Степанова не знаком, попробую почитать.
Вот результаты моего расчета, пошагово: «Лоренц»
Давайте попробуем сравнить с Вашими аналогичными результатами.

Процедура выбора шага расчета основана на анализе сходимости числовых мажорант по признаку Вейерштрасса. Подробное описания процедуры поиска шага расчета выходит за рамки комментария.
По поводу результатов вычислительного эксперимента — попробуйте подставить результат Вашего расчета в исходную систему ОДУ — численные значения производных немного отличаются от представленных Вами в статье. Или я где-то ошибаюсь?

Исходный код моей программы занимает несколько тысяч строк кода (зачастую без комментариев) и с ее помощью можно рассчитывать различные нелинейные ОДУ, не только эту систему.

Гарантии получения корректного результата при расчете динамических систем

Совершенно верно. Метод включает в себя аналитическую часть и численную. Причем аналитическая часть выполняется единожды, а численная — на каждом шаге расчета.
Если сообществу интересно могу описать процедуру расчета на примере анализа системы Лоренца — это будет уже отдельная статья, поскольку описание слишком велико для комментария.

Гарантии получения корректного результата при расчете динамических систем

Поддчеркну, что это не мой метод. Над ним работали и сейчас продолжают работать несколько ученых. Я лишь осуществил программную реализацию метода.
С указанными изданиями знаком поверхностно. Как оценить «похожесть» на методы Рунге-Кутты?
Например, аналитически-численный метод (он так и называется) снабжён процедурой выбора величины шага расчёта, которая принципиально отличается от всех других существующих методов. Процедура основана на анализе сходимости числовых мажорант по признаку Вейерштрасса.

Гарантии получения корректного результата при расчете динамических систем

К моему великому сожалению авторы книги не пожелали выкладывать ее в онлайн — опасаются нарушения своих прав, видимо. Поэтому ее можно найти только в аналоговых библиотеках.
Обоснование усложнения достаточно простое — используемый инструмент (ряды Тейлора, преобразования Лапласа, ряд Лорана) позволяет решать описанный класс задач. Он достаточно широк, но в плане используемого аппарата это один класс задач и один подход.
Столь точная формулировка необходима чтобы ограничить класс задач.
Какую именно формулу Вы хотите увидеть?

Информация

В рейтинге
Не участвует
Зарегистрирован
Активность