Обновить
6
0

Инжинер

Отправить сообщение

Variational Inference — что это такое и с чем это едят?

Время на прочтение5 мин
Охват и читатели8.3K
Привет, Хабр!

Недавно пообщался с коллегами о вариационном автоэнкодере и выяснилось что многие даже работающие в Deep Learning знают о вариационном выводе (Variational Inference) и в частности Нижней вариационной границе только по наслышке и не до конца понимают что это такое.
В этой статье я хочу подробно разобрать эти вопросы. Кому интересено, прошу под кат — будет очень интересно.
Читать дальше →

Нахождение объектов без учителя (Unsupervised Object Detection)

Время на прочтение7 мин
Охват и читатели9.2K
image

Одна из важнейших задач в машинном обучении — детектирование объектов (Object Detection). Недавно был опубликован ряд алгоритмов машинного обучения основанных на глубоком обучении (Deep Learning) для детектирования объектов. Эти алгоритмы занимают одно из центральных мест в практических приложениях компьютерного зрения, в частности, очень популярные сейчас самоуправляемые автомобили (Self-Driving Cars). Но все эти методы являются методами обучения с учителем, т.е. им необходим размеченный набор данных (Dataset) огромного размера. Естественно возникает желание иметь модель способную обучаться на «сырых» (неразмеченных) данных. Я попытался проанализировать существующие методы и также указать возможные пути их развития. Всех желающих милости прошу под кат, будет интересно.
Читать дальше →

Устойчивость обучения GAN (Копаем глубже)

Время на прочтение8 мин
Охват и читатели4.7K
image

В предыдущей статье на примере игрушечных моделей я попытался проанализировать почему же, собственно, у нас получается достаточно эффективно обучать GAN’ы. Сейчас же мы попробуем обобщить некоторые результаты и, самое главное, попробуем проанализировать как влияет архитектура нейронных сетей на устойчивость процесса обучения.
Читать дальше →

Устойчивость обучения GAN

Время на прочтение8 мин
Охват и читатели15K
Впервые идея GAN была опубликована Яном Гудфеллоу Generative Adversarial Nets, Goodfellow et alб 2014, после этого GAN'ы являются одними из лучших генеративнх моделей.

Как и у любой другой генеративной модели задача GAN построить модель данных, а если более конкретно научиться генерировать семплы из распределения максимально близкого к распределению данных (обычно имеется датасет ограниченного размера, распределение данных в котором мы хотим промоделировать).

GAN’ы огромным количеством достоинств, но у них есть один существенный недостаток – их очень сложно обучать.

В последнее время вышел ряд работ посвященных устойчивости GAN:


Вдохновившись их идеями, я сделал небольшое свое исследование.
Читать дальше →

Информация

В рейтинге
Не участвует
Зарегистрирован
Активность