• SiC: микроэлектроника — это не только кремний

      Современная микроэлектроника практически полностью построена вокруг кремниевых КМОП-микросхем. Как вышло, что кремний опередил появившийся раньше германий и более перспективный арсенид галлия, я уже рассказывал раньше, а сегодня давайте поговорим о другом полупроводниковом материале, стремительно ворвавшемся в царство кремния и готовящемся остаться в нем всерьез и надолго. Этот материал — карбид кремния (SiC).


      Статья получилась длинной, поэтому спойлеры: гегемонии кремния в микропроцессорах ничего не угрожает, но в силовой электронике SiC действительно намного лучше. В частности, внутри статьи можно будет увидеть чуть-чуть внутренностей автомобилей Tesla и много силовых полупроводниковых приборов.
      Читать дальше →
    • Кто есть кто в мировой микроэлектронике

        Типичная новость про электронику начала 2020 года: «Intel, вероятно, не будет размещать заказ на производство у TSMC, но рассматривает возможность сотрудничества с GlobalFoundries». Кто такие Intel — всем понятно, но что за GlobalFoundries и TSMC? Когда деревья были большими, каждая микроэлектронная компания самостоятельно производила свои микросхемы, а то и технику на их основе, как какая-нибудь Toshiba или IBM. С тех пор утекло много воды, производство подорожало, сложность приборов возросла, и в создании такого приземленного и распространенного девайса, как айфон, участвует несколько десятков высокотехнологичных компаний с трех континентов. Размеры мирового рынка полупроводниковых микросхем и приборов оцениваются больше, чем в 400 миллиардов долларов, но не все гиганты этого рынка имеют дело с конечными пользователями и часто появляются в новостях. Зато когда появляются — могут сбить с толку. Чтобы этого не происходило, я попробую кратко описать, кто есть кто.
        Читать дальше →
      • Краткая история космических микропроцессоров, часть вторая

          Это вторая часть статьи про историю микропроцессоров для космического применения. Первая часть – вот здесь. В ней на примерах американских и европейских микросхем мы посмотрели на историю развития радстойких чипов от первых однокристалльных процессоров до конца двухтысячных, когда проектные нормы космических разработок плотную подобрались к рубежу 100 нм.

          Следующий большой шаг в обеспечении радиационной стойкости наступил с переходом на суб-100 нм, где практически каждое следующее поколение технологии приносит новые вопросы: меняются материалы, меняются требования к топологии, растет статическая мощность (утечки безо всякой радиации, которые под дозой становятся еще хуже), продолжает расти значимость одиночных эффектов, которые превращаются во множественные. Эти задачи потребовали разработки новых подходов и, что удивительно, частичного возврата к старым, потому что часть вещей, отлично себя зарекомендовавших на нормах 1-0.18 мкм, на более тонких нормах не работает. Например, в таких технологиях для повышения выхода годных запрещено делать любимые дизайнерами радстойких чипов кольцевые транзисторы. О том, как дизайнеры справляются с новыми вызовами, я расскажу на примере России – и заодно сравню достижения наших соотечественников с успехами иностранных коллег и покажу, чего стоит ожидать в обозримом будущем.
          Читать дальше →
        • Краткая история космических микропроцессоров, часть первая

            Десятого июля 1962 года с космодрома на мысе Канаверал стартовала ракета “Тор” с первым коммерческим телекоммуникационным спутником на борту. Telstar-1 стал зарей новой эры космонавтики, показавшей, что космос может приносить людям реальную пользу. Этот аппарат ждало большое будущее, но днем раньше в небе над атоллом Джонсон, расположенном в пустынной части Тихого океана, взорвалась атомная бомба Starfish Prime. Взрыв уничтожил три сотни уличных фонарей на расположенных в полутора тысячах километров Гавайях, а также создал огромное количество свободных электронов, подхваченных магнитным полем Земли в рукотворный радиационный пояс. Каждый раз, когда Telsat-1 проходил через этот пояс, продвинутая транзисторная начинка набирала дозу радиации, и уже к ноябрю 1962 года он перестал работать. С изучения последствий этого инцидента началась история защиты космической электроники от радиации.

            С высотными ядерными взрывами, к счастью, довольно быстро завязали, но и без них работы достаточно, и требования по надежности и долговечности, предъявляемые к современным спутникам, становятся все амбициознее. Рассказать обо всем невозможно, но я постараюсь кратко осветить прошлое и настоящее космических микропроцессоров из разных стран. Почему именно микропроцессоров? Про них больше всего информации и они лучше понятны неспециалистам. Статья получилась длинной, поэтому я разбил ее на две части: ранняя история на примере США и Европы (под катом) и современная – на примере России (вот тут). Поехали!
            Читать дальше →
          • Популярные заблуждения про радиационную стойкость микросхем

              Примерно в каждой второй теме на Хабре, касающейся космонавтики или электроники, всплывает тема радиационной стойкости. Через новости об отечественной космонавтике красной нитью проходит тематика импортозамещения радстойкой элементной базы, но в то же самое время Элон Маск использует дешевые обычные чипы и гордится этим. А изральтяне в «Берешите» использовали радстойкий процессор и тоже гордятся этим. Да и в принципе микроэлектронная отрасль в России живет по большей части за счет госзаказа с соответствующими требованиями. Наблюдение за регулярными спорами насчет того, как надо правильно строить спутники, показывает, что подготовка участников обычно невысока, а их аргументация отягощена стереотипами, случайно услышанными вырванными из контекста фактами и знаниями, устаревшими много лет назад. Я подумал, что читать это больше нет сил, поэтому, дорогие аналитики, устраивайтесь поудобнее на своих диванах, и я начну небольшой (на самом деле большой) рассказ о самых популярных заблуждениях на тему того, что такое радиационная стойкость интегральных микросхем.


              Рисунок 1. Непременная красивая картинка про космическое излучение и хрупкую Землю.
              Читать дальше →
            • Почему кремний и почему КМОП?

                Самый первый транзистор был биполярным и германиевым, но подавляющее большинство современных интегральных микросхем сделаны из кремния по технологии КМОП (комплементарный металл-оксид-полупроводник). Как вышло, что кремний стал главным из многих известных полупроводников? Почему именно КМОП-технология стала почти монопольной? Были ли процессоры на других технологиях? Что ждет нас в ближайшем будущем, ведь физический предел миниатюризации МОП-транзисторов фактически достигнут?


                Если вы хотите узнать ответы на все эти вопросы — добро пожаловать под кат. По просьбам читателей предыдущих статей предупреждаю: там много текста, на полчаса.
                Читать дальше →
              • Защита микросхем от реверс-инжиниринга и несанкционированного проникновения


                  “CVAX — когда вы забатите довольно воровать настоящий лучший”.
                  Надпись, оставленная американскими инженерами для советских коллег в топологии микропроцессора.

                  Реверс-инжиниринг микросхем — головная боль производителей с самых первых лет существования микроэлектроники. Вся советская электроника в какой-то момент была построена на нем, а сейчас с гораздо большим размахом тем же самым занимаются в Поднебесной, да и не только в ней. На самом деле, реверс-инжиниринг абсолютно легален в США, Евросоюзе и многих других местах, с целью (цитирую американский закон) “teaching, analyzing, or evaluating the concepts or techniques embodied in the mask work or circuitry”.

                  Самое частое легальное применение реверс-инжиниринга — патентные и лицензионные суды. Промышленный шпионаж тоже распространен, особенно с учетом того, что электрические схемы (особенно аналоговые) часто являются ключевой интеллектуальной собственностью и редко патентуются — как раз для того, чтобы избежать раскрытия IP и участия в патентных судах в качестве обвиняющей стороны. Разумеется, оказавшись в ситуации, когда нужно защитить свою интеллектуальную собственность, не патентуя ее, разработчики и производители стараются придумать способы предотвращения копирования своих разработок.

                  Другое не менее (а то и более) важное направление защиты микросхем от реверс-инжиниринга — обеспечение безопасности информации, хранимой в памяти. Такой информацией может быть как прошивка ПЛИС (то есть опять-таки интеллектуальная собственность разработчика), так и, например, пин-код от банковской карты или ключ шифрования защищенной флэшки. Чем больше ценной информации мы доверяем окружающему миру, тем важнее защищать эту информацию на всех уровнях работы обрабатывающих ее систем, и хардварный уровень — не исключение.
                  Читать дальше →
                • System in Package, or What's Under Chip Package Cover?

                    Transistor feature size is decreasing despite constant rumors about the death of Moore’s law and the fact that industry is really close to physical limits of miniaturisation (or even went through them with some clever technology tricks). Moore’s law, however, created user’s appetite for innovation, which is hard to handle for the industry. That’s why modern microelectronic products aren’t just feature size scaled, but also employ a number of other features, often even more complicated than chip scaling.


                    Disclaimer: This article is a slightly updated translation of my own piece published on this very site here. If you're Russian-speaking, you may want to check the original. If you're English-speaking, it's worth noting that English is not my native language, so I'll be very grateful for the feedback if you find something weird in the text.
                    Read more →
                  • Проектные нормы в микроэлектронике: где на самом деле 7 нанометров в технологии 7 нм?

                      Современные микроэлектронные технологии — как «Десять негритят». Стоимость разработки и оборудования так велика, что с каждым новым шагом вперёд кто-то отваливается. После новости об отказе GlobalFoundries от разработки 7 нм их осталось трое: TSMC, Intel и Samsung. А что такое, собственно “проектные нормы” и где там тот самый заветный размер 7 нм? И есть ли он там вообще?


                      Рисунок 1. Транзистор Fairchild FI-100, 1964 год.

                      Самые первые серийные МОП-транзисторы вышли на рынок в 1964 году и, как могут увидеть из рисунка искушенные читатели, они почти ничем не отличались от более-менее современных — кроме размера (посмотрите на проволоку для масштаба).
                      Читать дальше →
                    • Системы в корпусе или Что на самом деле находится под крышкой корпуса микропроцессора

                        Размеры транзисторов в современных микросхемах неумолимо уменьшаются — несмотря на то, что о смерти закона Мура говорят уже несколько лет, а физический предел миниатюризации уже близок (точнее, в некоторых местах его уже успешно обошли). Тем не менее, это уменьшение не приходит даром, а аппетиты пользователей растут быстрее, чем возможности разработчиков микросхем. Поэтому, кроме миниатюризации транзисторов, для создания современных микроэлектронных продуктов используются и другие, зачастую не менее продвинутые технологии.


                        Читать дальше →
                      • Заказные блоки в микросхемах (Silicon IP): как это работает

                          В каждой статье на Хабре, посвященной отечественным микропроцессорам, так или иначе поднимается вопрос лицензионных IP-блоков и того, насколько их наличие и отсутствие уменьшает ценность, отечественность или безопасность разработки. При этом очень многие комментаторы не слишком хорошо понимают предмет обсуждения, поэтому давайте попробуем разобраться, как же именно работает лицензирование в микроэлектронной индустрии, чем хороши и чем плохи лицензированные блоки, и в чем состоит процесс разработки микросхемы, если большая часть блоков в ней куплена.


                          Читать дальше →
                        • Экономика полупроводникового производства в России: разбираем одну новость

                            Компания экс-министра связи начнет экспорт микроэлектроники в Китай — гласит свежая новость на РБК.

                            Внутри — подробности готового к заключению контракта наконец-то заработавшего завода «Ангстрем-Т» с китайцами. Давайте попробуем вооружиться калькулятором и посмотреть, что же на самом деле стоит за цифрами из новостей.
                            Читать дальше →
                          • Немного о проектных нормах и о микросхемах своими руками

                              Несколько дней назад Intel объявила о том, что производственные проблемы (недостаточный выход годных) вынудили ее сместить старт коммерческого производства на проектных нормах 10 нм с конца этого года на начало следующего. А TSMC уже начали серийное производство 7 нм, с пятью десятками проектов в этом году. Это одна сторона медали.

                              Другая сторона — вчерашний перевод статьи о школьнике из США, который сделал то, что не удалось BarsMonster, и в гараже произвел микросхему. С проектными нормами 175 микрон!

                              В комментариях к этому переводу было некоторое количество вопросов “когда уже можно будет купить опенсорсный процессор?”, “когда появятся 3D-принтеры для микросхем?”, и я решил немного осветить вопрос того, что происходит с проектными нормами между 10 нм и 175 мкм, в том числе применительно к их доступности для любителей и маленьких компаний.

                              Спойлер: ASIC для майнинга — это неподъемно дорого (десятки миллионов долларов).
                              Читать дальше →
                            • Российская микроэлектроника для космоса: кто и что производит

                                В связи с известными событиями в новостях появились сообщения о том, что США запретили поставки микроэлектроники для российских спутников и военной техники.
                                Такое развитие событий может негативно повлиять на состояние российской аэрокосмической и оборонной промышленности, ведь ежегодный импорт электроники для космической промышленности составляет два миллиарда долларов, и это чипы, критически важные для работоспособности спутников. Некоторые чиновники (смотрите статью по ссылке) уже начали предаваться панике и разговаривать о покупке электроники в Китае, который якобы наладил у себя производство всего необходимого. Я же хочу немного рассказать о том, какие микросхемы разрабатываются и производятся для космической отрасли в России.
                                Читать дальше →
                              • Физика радиационных эффектов, влияющих на электронику в космосе

                                Технологический процесс с проектными нормами 32 нм.
                                Два ядра ARMv7 с тактовой частотой 1,3 ГГц
                                Оперативная память – 1 Гбайт.


                                Технологический процесс с проектными нормами 150 нм.
                                Одно ядро PowerPC с тактовой частотой 200 МГц.
                                Оперативная память – 256 Мбайт.


                                Сверху – параметры центрального процессора iPhone5, внизу – марсохода Curiosity. Бортовой компьютер марсохода стоит приблизительно в двести раз дороже нового айфона. Почему так? Центральный процессор космического аппарата должен быть устойчивым к воздействию радиации. На Хабре уже была хорошая обзорная статья о космической электронике, а я постараюсь подробнее рассказать о физических принципах и эффектах, стоящих за сбоями и отказами в космосе.
                                Читать дальше →