Обновить
93
7.2
Куцев Роман @kucev

Тестируйте и сравнивайте лучшие LLM на LLMarena.ru

Отправить сообщение

Лучшие инструменты разметки изображений для компьютерного зрения 2020 года

Время на прочтение6 мин
Количество просмотров5.3K

В 2018 году мы опубликовали обзор лучших инструментов аннотирования, которыми регулярно пользуемся. Статью с энтузиазмом восприняли и профессионалы в сфере ИИ, и неспециалисты.


С нами даже связались несколько новых платформ, попросив провести бета-тестирование их инструментов и написать отзывы об UX и UI на основе нашего личного опыта управления крупномасштабными проектами разметки для ИИ.


С 2018 года произошёл большой прогресс в сфере платформ разметки, в том числе успешный фандрайзинг Labelbox, упрочивший его ведущую позицию в этой области, а также заявления о потрясающих новых функциях нашего любимого Supervise.ly, который мы продолжаем использовать в большинстве проектов.

Мы решили, что настало подходящее время для рассказа о самых потрясающих новых инструментах, появившихся за последнее время. В предыдущей статье мы оценивали продукты по следующим параметрам:


  • Цена
  • Функции
  • Управление проектами

Но решили, что стоит добавить ещё один:


  • Автоматизация

Ведь каждый из этих новых инструментов имеет отличные новые способы оптимизации ручного процесса аннотирования.

Читать дальше →

Лучшие инструменты аннотирования для компьютерного зрения в 2021 году

Время на прочтение9 мин
Количество просмотров6.6K

Мы уже долгое время занимались регулярной публикацией обзоров лучших инструментов аннотирования на рынке. Радостно видеть, что экосистема всегда динамична, а у платформ аннотирования появляются всё более мощные функции.


Все наши обзоры совершенно честны и основаны на личном опыте аннотирования тысяч изображений и видео для различных проектов и областей применения.


В этом году мы хотим поделиться списком лучших инструментов для разметки и аннотирования в 2021 году (вне какого-либо порядка).


Как и в предыдущих списках, мы оценивали инструменты по следующим параметрам:


  • Функции
  • Автоматизация
  • Управление проектами
Читать дальше →

6 правил по обеспечению качества данных для машинного обучения

Время на прочтение6 мин
Количество просмотров5.1K

"Качество — это не действие, а привычка", — сказал великий древнегреческий философ Аристотель. Эта идея справедлива сегодня так же, как и более двух тысяч лет назад. Однако качества добиться не так легко, особенно когда дело касается данных и технологий наподобие искусственного интеллекта (ИИ) и машинного обучения.


В некоторых областях можно почти без проблем использовать данные с высокой частотой ошибок, в других же система даёт сбой при малейших погрешностях в большом датасете. Принцип "мусор на входе, мусор на выходе" нужно воспринимать со всей серьёзностью. Мельчайшая некорректность в наборах данных может иметь большое влияние на модель и приводить к созданию бесполезных результатов. Чистота и целостность данных — ключевой аспект в создании сложных моделей машинного обучения.


Читать дальше →

5 этапов, гарантирующих успешную разметку данных

Время на прочтение6 мин
Количество просмотров2K

Формирование бюджета, создание и масштабирование операций по разметке данных


Недооценка труда, необходимого для разметки данных — это распространённая ошибка, признаваемая даже тяжеловесами отрасли разработки ИИ. Большинство распространённых трудностей, с которыми AI/ML-компании сталкиваются в процессе разметки данных, сводится к неадекватному планированию. Эта проблема может принимать различные формы, например:


  • Почему мы потратили 100 тысяч долларов на этот набор данных?
  • Где набор данных, на создание которого у нас ушло пять месяцев?
  • Почему наш data scientist тратит по 40 часов в неделю на разметку данных?

К счастью, все эти трудности можно решить адекватным планированием. В этой статье мы вкратце изложим ключевые элементы хорошего планирования и прогнозирования. Их можно разбить на пять категорий:


  1. Установка целей
  2. Планирование проекта
  3. Оценка времени и затрат
  4. Оценка партнёров
  5. Назначение менеджера проекта
Читать дальше →

5 трендов в аннотировании данных в 2021 году

Время на прочтение3 мин
Количество просмотров2.2K

Бум искусственного интеллекта продолжается, поэтому развиваются технологии разметки и аннотирования данных. Какой бы ни была область машинного обучения, от computer vision до автономных автомобилей, ей обычно требуется аннотировать огромное количество данных. По данным Cognilytica, рынок решений подготовки данных для машинного обучения к концу 2024 года вырастет до 3,5 миллиарда долларов. Чтобы справляться с этим растущим спросом, поставщики услуг разметки данных стратегически продумывают способы возможного масштабирования процессов аннотирования, функций инструментов и количества сотрудников с сохранением точности и качества. В этой статье мы перечислим внедряемые в рабочий процесс новшества, способные повысить его эффективность и скорость.

Читать дальше →

Как организовать разметку данных для машинного обучения: методики и инструменты

Время на прочтение17 мин
Количество просмотров11K

Если бы у data science существовал собственный зал славы, отдельную его часть нужно было бы посвятить разметке. Памятник отвечающим за разметку выглядел бы как атлант, держащий огромный камень, символизирующий их тяжелый и скрупулезный труд. Собственной стелы заслужила бы и база данных изображений ImageNet. За девять лет её контрибьюторы вручную разметили более 14 миллионов изображений. Даже представлять этот труд утомительно.


Хотя разметка и не является особо интеллектуальным трудом, она всё равно остаётся серьёзной проблемой. Разметка — неотъемлемый этап предварительной обработки данных для контролируемого обучения. Для этого стиля обучения моделей используются исторические данных с заранее заданными целевыми атрибутами (значениями). Алгоритм может находить целевые атрибуты, только если их указал человек.


Занимающиеся разметкой люди должны быть чрезвычайно внимательны, поскольку каждая ошибка или неточность отрицательно влияет на качество датасета и на общую производительность прогнозирующей модели.


Как получить высококачественный размеченный набор данных и не поседеть в процессе работы? Главной трудностью являются выбор ответственных за разметку, оценка необходимого для неё времени и подбор наиболее подходящих инструментов.

Читать дальше →

7 способов получить качественные размеченные данные для машинного обучения

Время на прочтение5 мин
Количество просмотров5.2K

Наличие размеченных данных необходимо для машинного обучения, но получение таких данных — непростая и дорогостоящая задача. Мы рассмотрим семь способов их сбора, в том числе перепрофилирование, поиск бесплатных источников, многократное обучение на данных с постепенно повышающимся качеством, а также другие способы.


Любой data scientist знает, что необученная ML модель бесполезна. Без высококачественных размеченных данных для обучения контролируемое, обучение разваливается; при этом невозможно гарантировать, что модели смогут прогнозировать, классифицировать или каким-то иным образом анализировать интересующее нас явление с хоть какой-нибудь точностью.



При проведении контролируемого обучения (supervised learning) лучше не разрабатывать модель, если нет возможности найти подходящие данные для обучения. Даже если вы нашли подходящий набор обучающих данных, он не особо полезен, если его элементы не размечены, не снабжены метками и аннотациями для эффективного обучения алгоритма.

Читать дальше →

Топ-5 инструментов для разметки данных в 2021 году

Время на прочтение9 мин
Количество просмотров13K

Программы для разметки данных (data labeling) необходимы для прокачки машинного обучения и создания обучающих наборов данных. Поэтому мы решили изучить наилучшие решения из этой области, имеющиеся сегодня на рынке.

Читать далее

Создаем датасет для распознавания счетчиков на Яндекс.Толоке

Время на прочтение10 мин
Количество просмотров22K


Как-то два года назад, случайно включив телевизор, я увидел интересный сюжет в программе "Вести". В нём рассказывали о том, что департамент информационных технологий Москвы создает нейросеть, которая будет считывать показания счетчиков воды по фотографиям. В сюжете телеведущий попросил горожан помочь проекту и прислать снимки своих счетчиков на портал mos.ru, чтобы на них обучить нейронную сеть. 


Если Вы — департамент Москвы, то выпустить ролик на федеральном канале и попросить людей прислать изображения счетчиков — не очень большая проблема. Но что делать, если Вы — маленький стартап, и сделать рекламу на телеканале не можете? Как получить 50000 изображений счетчиков в таком случае?

Читать дальше →

Создаем свой датасет с пришельцами

Время на прочтение5 мин
Количество просмотров15K


Сегментацией людей с помощью нейронных сетей уже никого не удивишь. Есть много приложений, таких как Sticky Ai, Teleport Live, Instagram, которые позволяют выполнять такую сложную задачу на мобильном телефоне в реалтайме.


Итак, предположим планета Земля столкнулась с внеземными цивилизациями. И от пришельцев из звездной системы Альфа Центавра поступает запрос на разработку нового продукта. Им очень понравилось приложение Sticky Ai, которое позволяет вырезать людей и делать стикеры, поэтому они хотят портировать приложение на свой межгалактический рынок.

Читать дальше →

Как создать свой датасет с Киркоровым и Фейсом на Яндекс.Толоке

Время на прочтение6 мин
Количество просмотров34K


Нейронными сетями уже никого не удивишь. Практически каждый человек знает, что такое машинное обучение, линейная регрессия, random forest. Каждый год тысячи людей проходят курсы по машинному обучению на ODS и Coursera. Любой школьник за пару недель теперь может освоить keras и клепать нейроночки. Но в нейронных сетях, как и во всем машинном обучении, помимо создания хорошего алгоритма, необходимы данные, на которых алгоритм будет обучаться.

Читать дальше →

Как написать чат-бота для vk.com за 3 минуты

Время на прочтение3 мин
Количество просмотров278K

К сожалению, на данный момент нет хороших библиотек на Python2, для того, чтобы быстро создать чат-бота. Ниже я покажу, как легко можно написать примитивного чат бота для VK, используя API VK.


Статья написана для новичков, чтобы показать, что ничего сложного в написании ботов на Python нет.

Читать дальше →

Не баг, а фича Вконтакте

Время на прочтение2 мин
Количество просмотров46K
Вконтакте существует с 2006 года. В те времена, как и на всех других сайтах, авторизация происходила с помощью ввода почты и пароля. Но почту и пароль могут украсть злоумышленники, способов очень много, в основном используют фишинговые сайты.

image
Ввел пароль на левом сайте, а через час «ты» уже будешь просить друзей вконтакте закинуть 1000 руб на модем.
Читать дальше →
12 ...
10

Информация

В рейтинге
840-й
Откуда
Москва, Москва и Московская обл., Россия
Зарегистрирован
Активность