
Предисловие
Года 3-4 назад судьба распорядилась так, что в руки мне попал ноутбук Asus G2S. Счастье моё длилось ровно до прошлой зимы, когда ни с того, ни с сего на экране стали появляться артефакты, особенно при запуске игрушек или «мощных» приложений, активно работающих с видеочипом. В результате оказалось, что проблема именно в нём. Nvidia для практически всей геймерской линейки G2 поставляла видеочипы с браком (отслоение контактов между самим кристаллом и подложкой), который обнаруживался лишь через пару лет интенсивной работы. Решение было однозначным – замена видеочипа. Но что делать со старым?! Ответ на этот вопрос пришёл на редкость быстро…
Много трафика под катом
Дело в том, что в качестве «хобби» я читаю лекции в СУНЦ МГУ (школа Колмогорова), и меня давно просили подготовить материал по микро и наноэлектронике, где бы объяснялось как, где и в каких условиях производят флешки, процессоры и т.д. А тут такой ценный образец пропадает, так что буквально через день старенький видеочип лежал под алмазным кругом микротома.

Наш старенький, но добротный Accutom-2. В корпорации добра даже нормальной фотографии этого девайса не нашлось.
Наверное, поступил глупо, что не снял видео процесса разрезания самого чипа, но что поделать – c’est la vie. Когда в руках у меня оказалось 3 части, то разочарованию не было предела. Оказалось, что срез был довольно грубым (хотя я рассчитывал, что микротом сможет разрезать ровно и оставить после себя гладкую поверхность), и пришлось ещё долго и упорно шлифовать и полировать торцевую поверхность чипа, которую я затем рассмотрел под электронным микроскопом.
О пользе полировки
Кстати, польза от полировки видна невооружённым взглядом, точнее вооружённым, но только оптическим микроскопом:

Слева фотографии до полировки, справа – после. Верхний ряд фотографий – увеличение 50x, нижний – 100x.
После полировки (фотографии справа) уже на увеличении 50x видны медные контакты, соединяющие отдельные структуры чипа. До полировки, они, конечно же, тоже проглядывают сквозь пыль и крошку, образовавшуюся после резки, но разглядеть отдельные контакты вряд ли удастся.
Электронная микроскопия
Оптика даёт 100-200 крат увеличения, однако это не идёт ни в какое сравнение с 100 000 или даже 1 000 000 крат увеличения, которое может выдать электронный микроскоп (теоретически для ПЭМ разрешение составляет десятые и даже сотые доли ангстрема, однако в силу некоторых реалий жизни такое разрешение не достигается). К тому же, чип изготовлен по техпроцессу 90 нм, и увидеть с помощью оптики отдельные элементы интегральной схемы довольно проблематично. А вот электроны вкупе с определёнными типами детектирования (SE2 – вторичные электроны) позволяют визуализировать разницу в химическом составе материала и, таким образом, заглянуть в самое кремниевое сердце нашего пациента, а именно узреть сток/исток, но об этом чуть ниже.
Печатная плата
Итак, приступим. Первое, что мы видим – печатная плата, на которой смонтирован сам кремниевый кристалл. К материнской плате ноутбука он крепится с помощью BGA пайки. В ходе разработки лекции для школьников я пользовался довольно подробными публикациями от компании Intel на Хабре, однако недавно нашёл пару видео фрагментов с канала Discovery о кремниевой электронике. Например, в этом видеофрагменте рассказано о том, как кремниевый чип устанавливается на подложку, а также как эти маленькие (~0,5 мм в диаметре) оловянные шарики упорядоченно размещаются на печатной плате. Китайцы с их трудолюбием и усердием тут совершенно ни при чём:

BGA пайка.

BGA пайка.
Сам же кристалл устанавливается на некое подобие BGA, давайте назовём его «mini»-BGA. Это те же шарики из олова, которые соединяют маленький кусочек кремния с большой многослойной печатной платой, только их размер гораздо меньше.

Сравнение BGA и mini-BGA пайки.

Сравнение BGA и mini-BGA пайки.
Кстати, между кристаллом и печатной платой находится очень много «шариков», которые, по всей видимости, являются своего рода заполнителем пустого пространства между этими элементами и, возможно, способствуют отводу тепла от самого чипа к PCB.

Множество шарообразных частиц заполняют пространство между чипом и печатной платой. А вы видите уже проглядывающие контакты на самом видеочипе?!
Далее будет немножко фотографий самой печатной платы. Она оказалось 8-ми слойной, причём все слои так или иначе соединены между собой. И ещё – материал платы «волнистый», это заметно, как на оптических фотографиях, так и на изображениях, полученных с помощью электронного микроскопа. Кто знает, почему?!



Элемент обвязки
Микротом позволил аккуратно разрезать один из элементов обвязки, который, судя по всему, является либо SMD резистором, либо конденсатором. Но, честно говоря, я ожидал увидеть всё что угодно, только не полосатую структуру (т.е. данный элемент собран послойно из нескольких материалов, о чём свидетельствует разность контраста), поэтому если есть знающие люди, то Ваши комментарии очень помогут разобраться.

Оптическая фотография элемента обвязки видеочипа.

Оптическая фотография элемента обвязки видеочипа.

Оп��ическая фотография элемента обвязки видеочипа.

СЭМ-фотография элемента обвязки видеочипа.

СЭМ-фотография элемента обвязки видеочипа.
Кристалл NVidia 8600GT собственной персоной
Итак, вроде все элементы чипа NVidia 8600 GT мы увидели, кроме самого главного – устройства самого камня, а точнее очень тонкого слоя на нём. О том, как кварцевый песок превращается в высокочистый монокристаллический кремний можно узнать из блога компании Intel или из следующего видео, опять-таки от канала Discovery:
Чтобы гонять электроны по своим медным и полупроводниковым контактам пластины из кремния прошли множество стадий обработки, а я взял и всё испортил, препарировал бедный чип. Но не буду долго томить… Вот, ради чего я так долго мучился, и что хотел увидеть – отдельные элементы, выполненные по техпроцессу 90 нм:

Отдельные элементы современной компьютерной техники.
Еле заметная разница в контрасте – это и есть те самые стоки/истоки, которые помогают нам с Вами работать за компьютером, играть в компьютерные игры, смотреть фильмы, слушать музыку и т.д. Размер структур составляет, по моим подсчётам, около 114 нм, учитывая ~10% в шкале и расчётах, а также особенности литографии, эта цифра очень хорошо согласуется с заявленным техпроцессом.
Далее будет ещё несколько фотографий видеочипа:





Заключение
Многое из увиденного внутри видеочипа меня поразило. Элемент обвязки – вообще, полосатый шедевр. И этим я с удовольствием поделился со школьниками на открытии олимпиады по нанотехнологиям, очный тур которой проводился в Москве в апреле месяце. На открытии мне довелось прочитать подготовленную лекцию.
Конечно, публикации от Intel, фото, найденные в Интернете с помощью корпорации добра, красивые картинки и анимация – отличная вещь, позволяющая быстро получить требуемую информацию и знание. Однако когда лично ты разрезаешь чип, изучаешь его, не отрываясь от экрана монитора часами, и видишь, что техпроцесс действительно 90 нм, что кто-то смог создать, просчитать всю эту конструкцию до мельчайших деталей, то в этот момент чувствуешь радость и гордость за человечество, которое создало такой совершенный продукт. Это просто WOW!
P.S. Если данный материал будет уважаемым хабралюдям интересен, то можно продолжить. Уже в полуготовом виде на сегодняшний день в коробочке аккуратно лежат мёртвая и препарированная флешка, HDD, кусочек CD диска и резистивный дисплей китаефона.
P.P.S. Пока я выкраивал время на подготовку материала на Хабре появилась аналогичная статья о Pentium III, так что будем считать это продолжением.
Во-первых, полный список опубликованных статей на Хабре:
Вскрытие чипа Nvidia 8600M GT, более обстоятельная статья дана тут: Современные чипы – взгляд изнутри
Взгляд изнутри: CD и HDD
Взгляд изнутри: светодиодные лампочки
Взгляд изнутри: Светодиодная промышленность в России
Взгляд изнутри: Flash-память и RAM
Взгляд изнутри: мир вокруг нас
Взгляд изнутри: LCD и E-Ink дисплеи
Взгляд изнутри: матрицы цифровых камер
Взгляд изнутри: Plastic Logic
Взгляд изнутри: RFID и другие метки
Взгляд изнутри: аспирантура в EPFL. Часть 1
Взгляд изнутри: аспирантура в EPFL. Часть 2
Взгляд изнутри: мир вокруг нас — 2
Взгляд изнутри: мир вокруг нас — 3
Взгляд изнутри: мир вокруг нас — 4
Взгляд изнутри: 13 LED-ламп и бутылка рома. Часть 1
Взгляд изнутри: 13 LED-ламп и бутылка рома. Часть 2
Взгляд изнутри: 13 LED-ламп и бутылка рома. Часть 3
Взгляд изнутри: IKEA LED наносит ответный удар
Взгляд изнутри: а так ли хороши Fillament-лампы?
и 3DNews:
Микровзгляд: сравнение дисплеев современных смартфонов
Во-вторых, помимо блога на HabraHabr, статьи и видеоматериалы можно читать и смотреть на Nanometer.ru, YouTube, а также Dirty.
В-третьих, если тебе, дорогой читатель, понравилась статья или ты хочешь простимулировать написание новых, то действуй согласно следующей максиме: «pay what you want»
Yandex.Money 41001234893231
WebMoney (R296920395341 или Z333281944680)
Иногда кратко, а иногда не очень о новостях науки и технологий можно почитать на моём Телеграм-канале — милости просим;)