Последние несколько лет идет бурная разработка и внедрение сетей стандарта Long Term Evolution (LTE). Большие и не очень операторы мобильной связи по всему миру активно продвигают эту технологию как технологию связи четвертого поколения (4G). Действительно ли LTE является технологией 4G? Ответ на этот вопрос ниже.
Для нача��а кратко вспомним, что было до LTE и каким путем развивалась мобильная связь. Рисунок ниже нам в этом поможет.

Началось все еще на границе 70-хх и 80-хх годов XX века. В это время были разработаны первые аналоговые системы мобильной связи (APMS, NMT-450, TACS) в нескольких странах (США, Япония, Северная Европа). Именно эти технологии принято относить к первому поколению (1G). Первой сетью, которая была запущена в коммерческую эксплутацию, является сеть стандарта APMS и было это в Чикаго.
Примерно через 10 лет уже были разработаны цифровые системы мобильной связи второго поколения (2G). Наиболее известными из них являются технологии CDMA и GSM. Технология CDMA основывается на кодовом разделении каналов, а технология GSM — на временном. Однако, обе являются технологиями с коммутацией каналов. И разрабатывались они для передачи голоса. Для того, чтобы передавать различные данные с использованием коммутации пакетов, и для повышения эффективности использования радиоресурсов, были разработаны надстройки GPRS и EDGE.
Следующим этапом в развитии мобильных систем связи является появление представителей третьего поколения (3G), а именно стандарта UMTS. Технология UMTS позволила увеличить скорости передачи данных, а также с самого начала поддерживала как коммутацию каналов, так и коммутацию пакетов. Дальнейшее развитие данной технологии (HSPA) обеспечивает еще большее увеличение скоростей передачи данных (вплоть до ~30 Мбит/с).
И вот тут появляется технология LTE. А на сегодняшний день есть уже ее продолжение в виде LTE-Advanced (LTE-A). К какому же поколению отнести эти технологии и чем они между собой отличаются? Давайте разбираться.
Тут все очень просто. Есть международный союз по телекоммуникациям, который называется ITU (International Telecommunications Union). Именно этот союз и определил требования к сетям четвертого поколения. Список требований называется IMT-Advanced (International Mobile Telecommunication-Advanced).
К основным требованиям относятся: пиковая спектральная эффективность, поддерживаемая ширина радиоканала и задержка передачи данных. В качестве значений этих характеристик, которыми должны обладать системы четвертого поколения, были выбраны следующие:
— пиковая спектральная эффективность: нисходящий канал (от базовой станции к абоненту) 15 бит/с/Гц; восходящий канал (от абонента к базовой станции) 6,75 бит/с/Гц
— поддерживаемая ширина канала: вплоть до 40 МГц
— задержка передачи данных: не в нагруженной системе не должна превышать 10 мс.
Удолетворяет ли данным требованиям технология LTE?
Характеристики LTE:
— пиковая спектральная эффективность: нисходящий канал 16 бит/с/Гц (при MIMO 4x4); восходящий канал 4 бит/с/Гц
— поддерживаемая ширина канала: до 20 МГц
— задержка передачи данных: ~5 мс.
Как мы видим, LTE полностью отвечает только требованиям по задержке для систем четвертого поколения. Требованиям ни по спектральной эффективности, ни по поддерживаемой ширине канала, предъявляемым к 4G, технология LTE не отвечает. Соответственно, ее нельзя относить к технологиям четвертого поколения. Все заявления о том, что LTE — это 4G, следует рассматривать как чисто маркетинговый ход и не более того.
Что же тогда является технологиями 4G? Давайте посмотрим на те самые характеристики технологии LTE-Advanced:
— пиковая спектральная эффективность: нисходящий канал 30 бит/с/Гц (при MIMO 8x8); восходящий канал 16,1 бит/с/Гц (при MIMO 4x4)
— поддерживаемая ширина канала: до 100 МГц
— задержка передачи данных: ~5 мс.
Вот это и есть настоящий 4G!
За счет чего же LTE-A удается добиться таких показателей? К основным причинам стоит отнести использование следующих технологий:
— увеличение количества передающих и приемных антенн вплоть до 8 с каждой стороны (MIMO 8x8)
— Carrier Aggregation — объединение частотных каналов, суммарная ширина которых может достигать 100 МГц
— Coordinated Multipoint (CoMP) transmission/reception — обслуживание одного абонента несколькими базовыми станциями
— HetNet — гетерогенные сети, использование пико- и микро- базовых станций.
О каждом из этих пуктов можно написать не одну статью. Если найдутся заинтересованные читатели, я попробую их кратко осветить в своих следующих работах.
На этом пока все. Спасибо за внимание.
P.S. Если кто-то сочтет данную заметку достойной приглашения — буду очень признателен.
Немного истории
Для нача��а кратко вспомним, что было до LTE и каким путем развивалась мобильная связь. Рисунок ниже нам в этом поможет.

Началось все еще на границе 70-хх и 80-хх годов XX века. В это время были разработаны первые аналоговые системы мобильной связи (APMS, NMT-450, TACS) в нескольких странах (США, Япония, Северная Европа). Именно эти технологии принято относить к первому поколению (1G). Первой сетью, которая была запущена в коммерческую эксплутацию, является сеть стандарта APMS и было это в Чикаго.
Примерно через 10 лет уже были разработаны цифровые системы мобильной связи второго поколения (2G). Наиболее известными из них являются технологии CDMA и GSM. Технология CDMA основывается на кодовом разделении каналов, а технология GSM — на временном. Однако, обе являются технологиями с коммутацией каналов. И разрабатывались они для передачи голоса. Для того, чтобы передавать различные данные с использованием коммутации пакетов, и для повышения эффективности использования радиоресурсов, были разработаны надстройки GPRS и EDGE.
Следующим этапом в развитии мобильных систем связи является появление представителей третьего поколения (3G), а именно стандарта UMTS. Технология UMTS позволила увеличить скорости передачи данных, а также с самого начала поддерживала как коммутацию каналов, так и коммутацию пакетов. Дальнейшее развитие данной технологии (HSPA) обеспечивает еще большее увеличение скоростей передачи данных (вплоть до ~30 Мбит/с).
И вот тут появляется технология LTE. А на сегодняшний день есть уже ее продолжение в виде LTE-Advanced (LTE-A). К какому же поколению отнести эти технологии и чем они между собой отличаются? Давайте разбираться.
Требования к 4G
Тут все очень просто. Есть международный союз по телекоммуникациям, который называется ITU (International Telecommunications Union). Именно этот союз и определил требования к сетям четвертого поколения. Список требований называется IMT-Advanced (International Mobile Telecommunication-Advanced).
К основным требованиям относятся: пиковая спектральная эффективность, поддерживаемая ширина радиоканала и задержка передачи данных. В качестве значений этих характеристик, которыми должны обладать системы четвертого поколения, были выбраны следующие:
— пиковая спектральная эффективность: нисходящий канал (от базовой станции к абоненту) 15 бит/с/Гц; восходящий канал (от абонента к базовой станции) 6,75 бит/с/Гц
— поддерживаемая ширина канала: вплоть до 40 МГц
— задержка передачи данных: не в нагруженной системе не должна превышать 10 мс.
Удолетворяет ли данным требованиям технология LTE?
Технологии LTE и LTE-A
Характеристики LTE:
— пиковая спектральная эффективность: нисходящий канал 16 бит/с/Гц (при MIMO 4x4); восходящий канал 4 бит/с/Гц
— поддерживаемая ширина канала: до 20 МГц
— задержка передачи данных: ~5 мс.
Как мы видим, LTE полностью отвечает только требованиям по задержке для систем четвертого поколения. Требованиям ни по спектральной эффективности, ни по поддерживаемой ширине канала, предъявляемым к 4G, технология LTE не отвечает. Соответственно, ее нельзя относить к технологиям четвертого поколения. Все заявления о том, что LTE — это 4G, следует рассматривать как чисто маркетинговый ход и не более того.
Что же тогда является технологиями 4G? Давайте посмотрим на те самые характеристики технологии LTE-Advanced:
— пиковая спектральная эффективность: нисходящий канал 30 бит/с/Гц (при MIMO 8x8); восходящий канал 16,1 бит/с/Гц (при MIMO 4x4)
— поддерживаемая ширина канала: до 100 МГц
— задержка передачи данных: ~5 мс.
Вот это и есть настоящий 4G!
За счет чего же LTE-A удается добиться таких показателей? К основным причинам стоит отнести использование следующих технологий:
— увеличение количества передающих и приемных антенн вплоть до 8 с каждой стороны (MIMO 8x8)
— Carrier Aggregation — объединение частотных каналов, суммарная ширина которых может достигать 100 МГц
— Coordinated Multipoint (CoMP) transmission/reception — обслуживание одного абонента несколькими базовыми станциями
— HetNet — гетерогенные сети, использование пико- и микро- базовых станций.
О каждом из этих пуктов можно написать не одну статью. Если найдутся заинтересованные читатели, я попробую их кратко осветить в своих следующих работах.
На этом пока все. Спасибо за внимание.
P.S. Если кто-то сочтет данную заметку достойной приглашения — буду очень признателен.