В арифметике натуральных чисел иног��а возникает необходимость поиска делителей составного числа N. Простая операция, обратная умножению чисел, на сегодняшний день неизвестна. Ее отсутствие создает определенные трудности при решении некоторых практических задач, особенно, если манипулировать приходится с числами высокой и очень высокой разрядности (сотни и даже тысячи цифр, представляющих числа).
В работе «Фундаментальные структуры натурального ряда чисел» Ваулин А.Е., Пилькевич С.В.– Интеллектуальные системы. Труды Седьмого международного симпозиума. Под ред. К.А. Пупкова.– М.: РУСАКИ, 2006. – с.384-387. Приводятся сведения об оригинальной концепции моделирования натурального ряда чисел и отдельного числа с целью установления свойств, слабо зависящих или вообще не зависящих от разрядности чисел. Дальнейшему развитию и уточнению деталей этого подхода посвящена настоящая работа.
Независимость некоторых свойств чисел от их разрядности явилась одной из основных идейных посылок предлагаемого аналитического подхода к моделированию чисел. Наличие таких свойств у чисел подтверждает существование признаков делимости чисел. Например, какой бы величины не было заданное число, если свертка (сумма) его цифр делится на три, то и исходное число делится на три. От разрядности числа делимость на три практически не зависит. Аналогично и для других признаков делимости. Это свидетельство того, что некоторые свойства чисел могут не зависеть от их разрядности. Поиск таких свойств и разработка теории их использования в различных направлениях, в частности, при разработке алгоритмов факторизации, установлении простоты числа, и других не менее трудных задач является актуальной и важной проблемой современной математики.
          В работе описывается новый обнаруженный признак-свойство чисел. Этот признак оказывается полезным для разработки алгоритмов решения как новых, так и традиционных задач теории и практики. Приведем вначале качественные содержательные рассуждения о сущности предлагаемой работы.
Натуральный ряд. Будем далее рассматривать натуральный ряд чисел как математический объект, имеющий сложное строение. НРЧ можно рассматривать как совокупность различных рядов с разными свойствами, например, составленным из двух арифметических прогрессий четных и нечетных чисел. Эти прогрессии имеют совпадающие разности d, равные d=2, но с разными начальными элементами: а=1 для прогрессии нечетных чисел и а=2 для прогрессии четных чисел. Загрузим все числа НРЧ в ячейки (разряды) регистра и тогда НРЧ можно представить регистром с бесконечным числом ячеек. Обратим внимание на ряд нечетных чисел.
Рассмотрим в НРЧ три смежных последовательных числа 2n–1, 2n, 2n+1, среднее из которых четное. Возведем их в квадрат. Между квадратами крайних нечетных чисел всегда лежит четное число разрядов регистра вида 8k, которое четным квадратом разбивается на два последовательных (смежных) нечетных числа вида 4k–1 слева и 4k+1 справа. Ячейку самого четного квадрата отнесем к правому числу.

Таким образом, любое нечетное число вида N=4k±1, k>0 – произвольное натуральное число, в НРЧ лежит всегда между квадратами чисел N=x12–x02 с разной четностью. В определенных ячейках НРЧ размещаются квадраты натуральных чисел. Такому размещению соответствует ряд закономерностей. Нечетные квадраты чередуются с четными квадратами. При этом, если больший квадрат x12 четный, то N=4k–1 и N≡3(mod4), а если больший квадрат x12 нечетный, то N=4k+1 и N≡1(mod4).
Представим регистр НРЧ линейкой с движком по типу логарифмической. Для заданного числа N в движке создадим окно размером в N+1 позиций (разрядов). Путем перемещения движка вдоль НРЧ-линейки будем находить и фиксировать его положения парой чисел (x02, x12), которые размещены в крайних позициях окна (x02 – левая и x12 – правая) и оба значения будут соответствовать числовым квадратам. Разность между квадратами в крайних позициях окна, очевидно, будет совпадать с числом N=x12–x02.
Контуры НРЧ. Расстояние между квадратами двух последовательных нечетных чисел назовем контуром. Расстояние между ячейками с квадратами несмежных чисел назовем интервалом в НРЧ. Если сумма смежных нечетных чисел кратна числу 8, то она образует длину интервала, называемого контуром, а значение k является номером этого контура. Так смежные числа 11 и 13 образуют контур(11+13=24=3•8) с номером k=3 и длиной L(k)=24=k•8, а смежные нечетные числа 13 и 15 контур не образуют (13+15=28≠k•8) .
Расстояния между нечетными квадратами-границами смежных чисел всегда образуют контуры и содержат число регистровых ячеек, равное 8k. Контуры в НРЧ образуют непрерывную последовательность с номерами k=1(1)∞, т.е. НРЧ образован заполненными числами ячейками последовательности контуров, длины которых кратны числу 8. Первый контур имеет длинуL(1)=32–12=1•8 , второй контур – L(2)=52–32=2•8=16 , и т.д. Длины контуров образуют арифметическую прогрессию с разностью d=8 и а=8.
Заполнение всех позиций окна числами (интервалов) в каждом из фиксированных парой чисел(x02, x12) положений обладает закономерностью и характеризуется некоторым числовым инвариантом, устанавливаемым в работе. Так как пар (x02, x12) может быть больше одной, то будем снабжать ее числа индексом i.
Пример 1
Для N=105 (размер окна — 1) имеется 4 положения (4 пары квадратов разной четности), которые фиксируются. Контролировать будем положение левой границы окна. Начинаем перемещение движка от 1 вправо. Первое положение (остановка) возникает с появлением на левой границе окна числа x02=4, но правая граница при этом равна 109 – не квадрат, затем на левой границе окна оказывается квадрат x02=9, но справа число 114 – не квадрат, после прохода позиции с числом 15 в окне слева появляется число x02=16 – квадрат. Останавливаемся и проверяем число на правой границе окна. Там видим число x12=121 – тоже квадрат. Фиксируем это положение с контролем разности между квадратами:x112–x012=112–42=105 .
          Продолжаем движение до прихода левого края окна в позиции 25, 36, 49 и видим, что для них правая граница на квадрат не попадает. Но когда в окне слева появляется число 64, справа видим число 169 – квадрат. Фиксируем это положение и выполняем контрольx122–x022=132–82=105 .
          Следующее фиксируемое положение окна: слева число xо2=256, а справа x12=361, оба квадраты. Фиксируем и выполняем контроль разности между квадратамиx132–x032=192–162=105 .
          И, наконец, четвертое положение окна дает разность квадратов равнуюx142–x042=532–522=105 .
          Дальнейшее движение прекращается, так как больше не существует пары квадратов, разность между которыми равна числу N=105, разность всех пар будет больше 105. Четвертую пару x142, x042 назовем предельной парой.

Полуконтуры. Место каждого четного квадрата вида (2k)2 во внутренней ячейке k-го контура. Эта ячейка делит длину L(k) контура на дваm(k)=4k–1 и М(k)=4k+1 смежных нечетных числа (левое и правое), называемых полуконтурами. Заметим, что контуры и полуконтуры – это множества ячеек, заполненных натуральными числами, а m(k) и M(k) – мощности этих множеств. Множества ячеек последовательно следующих полуконтуров формируют НРЧ. Все множество нечетных чисел образуют два класса: левые числа N≡3(mod4) и правые числа N≡1(mod4). Длины полуконтуров первого контура, левое нечетное число 4•1–1=3 и правое нечетное число 4•1+1=5, в сумме образуют длину L(k=1)=3+5=8 контура с номером k=1.
Границы контура. При заданном номере k контура он полностью определяется, полуконтуры с длинойm(k)=4k–1 левый и М(k)=4k+1 правый, границы этого контура левая Гл(k)=(2k–1)2 и правая Гп(k)=(2k+1)2 . Длина контура L(k)=m(k)+M(k)=Гп(k)–Гл(k)=8k . Четный квадрат Гч(k)=(2k)2 — общая граница полуконтуров.
          Действительно, разность границГп(k)–Гл(k)=(2k+1)2–(2k–1)2=4k2+2•2k+1–4k2+2•2k–1=8k.
Предельный контур. Любое нечетное число N можно представить как полуконтур в некотором контуре с номером kп. Такой контур единственный, так как контур слева от предельного имеет полуконтуры меньшие N, а справа — большие N. Число N левое или правое определяется с использованием четного квадрата предельного контура. Для левогоN=x12–x02 , и x1 четное, для правого N=x12–x02 и x1 нечетное. Здесь роль границ полуконтуров играют значения x12 и x02. Эти границы определяются из выражений x1=(N+1)/2 и xо=(N–1)/2 . Длина предельного контура с номером kп для числа N определяется по формуле

          Номер kп предельного контура числа N вычисляется через длину предельного контураkп=L(kп)/8 . Теперь самое время пояснить введенные понятия числовым примером. Это специально подобранный пример, очень простой, способствующий лучшему пониманию изучаемого явления.
Пример 2
Пусть задано составное нечетное натуральное число (сннч)N=105=3•5•7 . Для этого числа требуется найти предельный контур, его границы и определить его номер kп. Указать все пары квадратов (xi12, xi02) , i=1(1)... разной четности, разность между которыми равна числу N=105.
Решение. Для лучшего усвоения содержания примера рекомендуется воспользоваться карандашом и бумагой. Известно, что сннч лежит между квадратами разной четностиN=x12–x02 . Определим левое или правое число заданного N=105≡1(mod4) . Число N правое, т.е. это больший полуконтур в предельном контуре. Определим границы предельного контура через значение N, x1=(N+1)/2=(105+1)/2=53 и xо=(N–1)/2=(105–1)/2=52 . Квадраты чисел 52 и 53 являются границами полуконтура.
Длина контураL(kп)=2•105–2=208=8•kп , откуда kп=208/8=26 . Меньший (левый) полуконтур имеет длину m(kп)=L(kп)–М(kп)=208–105=103 , является простым числом.
          Находим через kп границы предельного контура: леваяГл(kп)=(2kп–1)2=(2•26–1)2=512=2601 и правая Гп(kп)=(2kп+1)2=(2•26+1)2=532=2809 . Длина контура через его границы определяется выражением L(kп)=Гп(kп)–Гл(kп)=2809–2601=208=8kп .
          Поскольку заданное сннч N=105 является полуконтуром в предельном контуре, то будем полагать, что ему соответствует лишь половина номера предельного контура, т.е.kп(N)/2=26/2=13 .
Инвариант числа. Характеристику числа N в форме kп(N)/2 назовем инвариантом числа N, а дальше покажем, почему выбрано такое название. Инвариант может быть целым или дробным числом в зависимости от четности номера kп предельного контура.
Интервалы НРЧ для числа N. Далее рассмотрим возможности представления сннч N=105 разностями других пар квадратов разной четности. Число 105, как впрочем, и любое другое нечетное число можно представить суммой нечетного количества меньших смежных нечетных чисел. Полезность такого представления N следует из того, что границы всех нечетных чисел в НРЧ – квадраты, следовательно, и непрерывный интервал, представляющий N=105 из смежных нечетных чисел, будет иметь на границах квадраты. Количество слагаемых в сумме должно быть нечетным числом.
          Рассмотренный пример показывает, что для числа N=105 существуют четыре пары квадратов разной четности, расстояние в НРЧ между которыми равно 105. Каждая из найденных пар квадратов позволяет решить задачу факторизации сннч N=105, исключая предельную пару – она дает тривиальное разложение на множители.
          Остается открытым очень важный вопрос, где брать, как получать для произвольного числа N пары(xо2, x12) квадратов?
          Анализ результатов примера 2 показывает, что разные пары квадратов(xоi2, x1i2) , i=1(1)4, получаются при разных представлениях инвариантаkп(N)/2=13 в виде суммы с разным числом слагаемых. Сами такие суммы можно рассматривать как разбиения числа 13 специального вида. Все слагаемые суммы представляют собой отрезок НРЧ, в котором одно из крайних слагаемых в сумму включается лишь своей половиной. Определение такого слагаемого диктуется принадлежностью числа N к классу левых или правых нечетных чисел.
Если N – левое, то половина берется от большего слагаемого:
Если N – правое, то половина берется от меньшего слагаемого:
Таким образом, из рассмотренных фактов следует алгоритм решения задачи факторизации чисел:
Рассмотренный материал позволяет сделать следующие выводы.
В работе «Фундаментальные структуры натурального ряда чисел» Ваулин А.Е., Пилькевич С.В.– Интеллектуальные системы. Труды Седьмого международного симпозиума. Под ред. К.А. Пупкова.– М.: РУСАКИ, 2006. – с.384-387. Приводятся сведения об оригинальной концепции моделирования натурального ряда чисел и отдельного числа с целью установления свойств, слабо зависящих или вообще не зависящих от разрядности чисел. Дальнейшему развитию и уточнению деталей этого подхода посвящена настоящая работа.
Независимость некоторых свойств чисел от их разрядности явилась одной из основных идейных посылок предлагаемого аналитического подхода к моделированию чисел. Наличие таких свойств у чисел подтверждает существование признаков делимости чисел. Например, какой бы величины не было заданное число, если свертка (сумма) его цифр делится на три, то и исходное число делится на три. От разрядности числа делимость на три практически не зависит. Аналогично и для других признаков делимости. Это свидетельство того, что некоторые свойства чисел могут не зависеть от их разрядности. Поиск таких свойств и разработка теории их использования в различных направлениях, в частности, при разработке алгоритмов факторизации, установлении простоты числа, и других не менее трудных задач является актуальной и важной проблемой современной математики.
          В работе описывается новый обнаруженный признак-свойство чисел. Этот признак оказывается полезным для разработки алгоритмов решения как новых, так и традиционных задач теории и практики. Приведем вначале качественные содержательные рассуждения о сущности предлагаемой работы.
Натуральный ряд. Будем далее рассматривать натуральный ряд чисел как математический объект, имеющий сложное строение. НРЧ можно рассматривать как совокупность различных рядов с разными свойствами, например, составленным из двух арифметических прогрессий четных и нечетных чисел. Эти прогрессии имеют совпадающие разности d, равные d=2, но с разными начальными элементами: а=1 для прогрессии нечетных чисел и а=2 для прогрессии четных чисел. Загрузим все числа НРЧ в ячейки (разряды) регистра и тогда НРЧ можно представить регистром с бесконечным числом ячеек. Обратим внимание на ряд нечетных чисел.
Рассмотрим в НРЧ три смежных последовательных числа 2n–1, 2n, 2n+1, среднее из которых четное. Возведем их в квадрат. Между квадратами крайних нечетных чисел всегда лежит четное число разрядов регистра вида 8k, которое четным квадратом разбивается на два последовательных (смежных) нечетных числа вида 4k–1 слева и 4k+1 справа. Ячейку самого четного квадрата отнесем к правому числу.

Таким образом, любое нечетное число вида N=4k±1, k>0 – произвольное натуральное число, в НРЧ лежит всегда между квадратами чисел N=x12–x02 с разной четностью. В определенных ячейках НРЧ размещаются квадраты натуральных чисел. Такому размещению соответствует ряд закономерностей. Нечетные квадраты чередуются с четными квадратами. При этом, если больший квадрат x12 четный, то N=4k–1 и N≡3(mod4), а если больший квадрат x12 нечетный, то N=4k+1 и N≡1(mod4).
Представим регистр НРЧ линейкой с движком по типу логарифмической. Для заданного числа N в движке создадим окно размером в N+1 позиций (разрядов). Путем перемещения движка вдоль НРЧ-линейки будем находить и фиксировать его положения парой чисел (x02, x12), которые размещены в крайних позициях окна (x02 – левая и x12 – правая) и оба значения будут соответствовать числовым квадратам. Разность между квадратами в крайних позициях окна, очевидно, будет совпадать с числом N=x12–x02.
Контуры НРЧ. Расстояние между квадратами двух последовательных нечетных чисел назовем контуром. Расстояние между ячейками с квадратами несмежных чисел назовем интервалом в НРЧ. Если сумма смежных нечетных чисел кратна числу 8, то она образует длину интервала, называемого контуром, а значение k является номером этого контура. Так смежные числа 11 и 13 образуют контур
Расстояния между нечетными квадратами-границами смежных чисел всегда образуют контуры и содержат число регистровых ячеек, равное 8k. Контуры в НРЧ образуют непрерывную последовательность с номерами k=1(1)∞, т.е. НРЧ образован заполненными числами ячейками последовательности контуров, длины которых кратны числу 8. Первый контур имеет длину
Заполнение всех позиций окна числами (интервалов) в каждом из фиксированных парой чисел
Пример 1
Для N=105 (размер окна — 1) имеется 4 положения (4 пары квадратов разной четности), которые фиксируются. Контролировать будем положение левой границы окна. Начинаем перемещение движка от 1 вправо. Первое положение (остановка) возникает с появлением на левой границе окна числа x02=4, но правая граница при этом равна 109 – не квадрат, затем на левой границе окна оказывается квадрат x02=9, но справа число 114 – не квадрат, после прохода позиции с числом 15 в окне слева появляется число x02=16 – квадрат. Останавливаемся и проверяем число на правой границе окна. Там видим число x12=121 – тоже квадрат. Фиксируем это положение с контролем разности между квадратами:
          Продолжаем движение до прихода левого края окна в позиции 25, 36, 49 и видим, что для них правая граница на квадрат не попадает. Но когда в окне слева появляется число 64, справа видим число 169 – квадрат. Фиксируем это положение и выполняем контроль
          Следующее фиксируемое положение окна: слева число xо2=256, а справа x12=361, оба квадраты. Фиксируем и выполняем контроль разности между квадратами
          И, наконец, четвертое положение окна дает разность квадратов равную
          Дальнейшее движение прекращается, так как больше не существует пары квадратов, разность между которыми равна числу N=105, разность всех пар будет больше 105. Четвертую пару x142, x042 назовем предельной парой.

Полуконтуры. Место каждого четного квадрата вида (2k)2 во внутренней ячейке k-го контура. Эта ячейка делит длину L(k) контура на два
Границы контура. При заданном номере k контура он полностью определяется, полуконтуры с длиной
          Действительно, разность границ
Предельный контур. Любое нечетное число N можно представить как полуконтур в некотором контуре с номером kп. Такой контур единственный, так как контур слева от предельного имеет полуконтуры меньшие N, а справа — большие N. Число N левое или правое определяется с использованием четного квадрата предельного контура. Для левого

          Номер kп предельного контура числа N вычисляется через длину предельного контура
Пример 2
Пусть задано составное нечетное натуральное число (сннч)
Решение. Для лучшего усвоения содержания примера рекомендуется воспользоваться карандашом и бумагой. Известно, что сннч лежит между квадратами разной четности
Длина контура
          Находим через kп границы предельного контура: левая
          Поскольку заданное сннч N=105 является полуконтуром в предельном контуре, то будем полагать, что ему соответствует лишь половина номера предельного контура, т.е.
Инвариант числа. Характеристику числа N в форме kп(N)/2 назовем инвариантом числа N, а дальше покажем, почему выбрано такое название. Инвариант может быть целым или дробным числом в зависимости от четности номера kп предельного контура.
Интервалы НРЧ для числа N. Далее рассмотрим возможности представления сннч N=105 разностями других пар квадратов разной четности. Число 105, как впрочем, и любое другое нечетное число можно представить суммой нечетного количества меньших смежных нечетных чисел. Полезность такого представления N следует из того, что границы всех нечетных чисел в НРЧ – квадраты, следовательно, и непрерывный интервал, представляющий N=105 из смежных нечетных чисел, будет иметь на границах квадраты. Количество слагаемых в сумме должно быть нечетным числом.
- Допустим, что таких слагаемых будет три. Очевидно,
105:3=35 и первое слагаемое будет равно35–2=33 , второе 35, а третье35+2=37 . Числа 33, 35, 37 образуют непрерывную последовательность нечетных смежных чисел, а 35 и 37 являются полуконтурами одного контура, так как их сумма35+37=72 кратна 8. Этот контур имеет номер k=72/8=9. Число 33 принадлежит другому предшествующему контуру с номером k=8 и в нем является правым, т.е. большим. Этому числу 33 соответствует половина номера его контура, т.е.k/2=8/2=4 . Интервалу из трех примыкающих друг к другу нечетных чисел длиной в 105 ячеек в НРЧ соответствует сумма номеров контуров в видеkп(N)/2=8/2+9=4+9=13 .
Для этого интервала определим границы. Большая граница интервала совпадает с правой границей большего контура с ��омером k=9, т.е.Гп(k)=(2•k+1)2=(2•9+1)2=192=x12=361 . Меньшая граница интервала совпадает с левой границей меньшего из трех полуконтура, т.е. числа 33, находящегося в контуре с номером k=8, его граница – это четный квадрат удвоенного номера контураГч(k)=Гл(k)=(2k)2=(2•8)2=x02=256 . Проверка:N=Гп(9)–Гл(8/2)=361–256=105 .
Теперь для N=105 можем записать факторыN=x12–x02=(19+16)(19–16)=35•3=105 . - Пусть представление N имеет полуконтурами в сумме пять нечетных слагаемых. Очевидно,
105:5=21 и первое слагаемое будет равно21–4=17 , второе21–2=19 , третье 21, четвертое21+2=23 и, наконец, пятое21+4=25 . Числа 17, 19, 21, 23, 25 образуют непрерывную последовательность нечетных смежных чисел, а 19, 21 и 23, 25 из них являются полуконтурами двух смежных контуров, так как их сумма19+21=40=5•8 и 23+25=48=6•8 кратна 8. Эти контуры имеют номераk=40/8=5 иk=48/8=6 .
Число 17 является большим (правым) полуконтуром предшествующего контура с номеромk=(15+17)/8=4 . Этому числу соответствует половина номера меньшего контураk/2=4/2=2 . Интервалу из пяти примыкающих друг к другу нечетных чисел длиной в 105 ячеек в НРЧ соответствует сумма номеров контуровkп(N)/2=4/2+5+6=2+5+6=13 .
Для этого интервала определим границы. Большая граница интервала совпадает с правой границей большего контура с номером k=6, т.е.Гп(k)=(2•k+1)2=(2•6+1)2=132=x12=169 . Меньшая левая граница интервала совпадает с левой границей меньшего полуконтура, т.е. числа 17, находящегося в контуре с номером k=4. Меньшая граница – это четный квадрат удвоенного номера контураГч(k)=Гл(k)=(2k)2=(2•4)2=x02=64 .Проверка на разность квадратов:N=Гп(6)–Гч(4)=169–64=105 . Теперь для N=105 можем записать факторыN=x12–x02=(13+8)(13–8)=21•5=105 . - Пусть слагаемых в представляющей число N сумме будет семь. Очевидно,
105:7=15 и первое слагаемое будет равно15–6=9 , второе15–4=11 , третье15–2=13 , четвертое 15, пятое15+2=17 , шестое15+4=19 и, наконец, седьмое15+6=21 . Числа 9, 11, 13, 15, 17, 19, 21 образуют непрерывную последовательность нечетных смежных чисел, а 11, 13; 15, 17 и 19, 21 являются полуконтурами трех смежных контуров, так как их суммы11+13=24=3•8 ;15+17=32=4•8 и19+21=40=5•8 кратны 8. Эти контуры имеют номераk=24/8=3 ,k=32/8=4 иk=40/8=5 .
Число 9 является большим (правым) полуконтуром предшествующего контура с номеромk=(7+9)/8=2 . Этому числу соответствует половина номера меньшего контура, т.е.k/2=2/2=1 . Интервалу из семи примыкающих друг к другу нечетных чисел длиной в 105 ячеек в НРЧ соответствует сумма номеров контуровkп(N)/2=2/2+3+4+5=1+3+4+5=13 .
Для этого интервала определим границы. Большая граница интервала совпадает с правой границей большего контура с номером k=5, т.е.Гп(k)=(2•k+1)2=(2•5+1)2=112=x12=121 . Меньшая граница интервала совпадает с левой границей меньшего полуконтура, т.е. числа 9, находящегося в контуре с номером k=2, это четный квадрат удвоенного номера контураГч(k)=Гл(k)=(2k)2=(2•2)2=x02=16 .Проверка:N=Гп(5)–Гч(2)=121–16=105 .
Теперь для N=105 можем записать факторыN=x12–x02=(11+4)(11–4)=15•7=105 .
          Рассмотренный пример показывает, что для числа N=105 существуют четыре пары квадратов разной четности, расстояние в НРЧ между которыми равно 105. Каждая из найденных пар квадратов позволяет решить задачу факторизации сннч N=105, исключая предельную пару – она дает тривиальное разложение на множители.
          Остается открытым очень важный вопрос, где брать, как получать для произвольного числа N пары
          Анализ результатов примера 2 показывает, что разные пары квадратов
Если N – левое, то половина берется от большего слагаемого:
- N=183 – левое нечетное, 183≡3(mod4), половина берется от большего слагаемого в представлении инварианта суммой
kп(183)/2=23=15+16/2 ; инвариант целое число; - N=203 – левое нечетное, 203≡3(mod4), половина берется от большего слагаемого в представлении инварианта суммой
kп(203)/2=25.5=6+7+8+9/2 ; инвариант не целое число;
Если N – правое, то половина берется от меньшего слагаемого:
- N=213 – правое нечетное, 213≡1(mod4), половина берется от меньшего слагаемого в представлении инварианта суммой
kп(213)/2=26.5=17/2+18 ; инвариант не целое число; - N=217 – правое нечетное, 217≡1(mod4), половина берется от меньшего слагаемого в представлении инварианта суммой
kп(217)/2=27=6/2+7+8+9 ; инвариант целое число;
Таким образом, из рассмотренных фактов следует алгоритм решения задачи факторизации чисел:
- Для заданного сннч N найти инвариант kn/2.
- Инвариант представить разбиением специального вида
kn/2=a+(a+1)+(a+2)+...+(a+t-1)+kд/2 , где kд – дополнительный номер крайнего контура, левый или правый. - Для крайних слагаемых вычислить границы: левую
Гл=x02 и правуюГп=x12 . - Разность границ представить произведением скобок
N=x12–x02=(x1+x0)(x1–x0)=pq .
Рассмотренный материал позволяет сделать следующие выводы.
- Модель составного нечетного натурального числа, представляемого в понятиях контуров – полуконтуров НРЧ позволяет установить инвариант такого числа, как функцию номеров представляющих число контуров. Инвариант
kп(N)/2 сохраняет значение независимо от того разностью какой пары квадратов ( при наличии нескольких пар квадратов ) представляется сннчN=xi12–xi02 , i=1(1)t, где t – число представляющих пар.N=105=xi12–xi02=532–522=192–162=132–82=112–42 - Значение инварианта устанавливается элементарной обработкой заданного числа N при установлении номера предельного контура. Инвариант может быть как целым, так и дробным числом. Относительно предельного контура сформулированы и доказаны теоремы, которые в посте не приводятся, но используются.
- Предлагаемая модель НРЧ в терминах и понятиях контуров – полуконтуров открывает возможность формулирования и исследования задачи факторизации нечетных чисел за приемлемое для практических приложений время.