В арифметике натуральных чисел иног��а возникает необходимость поиска делителей составного числа N. Простая операция, обратная умножению чисел, на сегодняшний день неизвестна. Ее отсутствие создает определенные трудности при решении некоторых практических задач, особенно, если манипулировать приходится с числами высокой и очень высокой разрядности (сотни и даже тысячи цифр, представляющих числа).

В работе «Фундаментальные структуры натурального ряда чисел» Ваулин А.Е., Пилькевич С.В.– Интеллектуальные системы. Труды Седьмого международного симпозиума. Под ред. К.А. Пупкова.– М.: РУСАКИ, 2006. – с.384-387. Приводятся сведения об оригинальной концепции моделирования натурального ряда чисел и отдельного числа с целью установления свойств, слабо зависящих или вообще не зависящих от разрядности чисел. Дальнейшему развитию и уточнению деталей этого подхода посвящена настоящая работа.

Независимость некоторых свойств чисел от их разрядности явилась одной из основных идейных посылок предлагаемого аналитического подхода к моделированию чисел. Наличие таких свойств у чисел подтверждает существование признаков делимости чисел. Например, какой бы величины не было заданное число, если свертка (сумма) его цифр делится на три, то и исходное число делится на три. От разрядности числа делимость на три практически не зависит. Аналогично и для других признаков делимости. Это свидетельство того, что некоторые свойства чисел могут не зависеть от их разрядности. Поиск таких свойств и разработка теории их использования в различных направлениях, в частности, при разработке алгоритмов факторизации, установлении простоты числа, и других не менее трудных задач является актуальной и важной проблемой современной математики.

&nbsp &nbsp &nbsp &nbsp &nbsp В работе описывается новый обнаруженный признак-свойство чисел. Этот признак оказывается полезным для разработки алгоритмов решения как новых, так и традиционных задач теории и практики. Приведем вначале качественные содержательные рассуждения о сущности предлагаемой работы.

Натуральный ряд. Будем далее рассматривать натуральный ряд чисел как математический объект, имеющий сложное строение. НРЧ можно рассматривать как совокупность различных рядов с разными свойствами, например, составленным из двух арифметических прогрессий четных и нечетных чисел. Эти прогрессии имеют совпадающие разности d, равные d=2, но с разными начальными элементами: а=1 для прогрессии нечетных чисел и а=2 для прогрессии четных чисел. Загрузим все числа НРЧ в ячейки (разряды) регистра и тогда НРЧ можно представить регистром с бесконечным числом ячеек. Обратим внимание на ряд нечетных чисел.

Рассмотрим в НРЧ три смежных последовательных числа 2n–1, 2n, 2n+1, среднее из которых четное. Возведем их в квадрат. Между квадратами крайних нечетных чисел всегда лежит четное число разрядов регистра вида 8k, которое четным квадратом разбивается на два последовательных (смежных) нечетных числа вида 4k–1 слева и 4k+1 справа. Ячейку самого четного квадрата отнесем к правому числу.


Таким образом, любое нечетное число вида N=4k±1, k>0 – произвольное натуральное число, в НРЧ лежит всегда между квадратами чисел N=x12–x02 с разной четностью. В определенных ячейках НРЧ размещаются квадраты натуральных чисел. Такому размещению соответствует ряд закономерностей. Нечетные квадраты чередуются с четными квадратами. При этом, если больший квадрат x12 четный, то N=4k–1 и N≡3(mod4), а если больший квадрат x12 нечетный, то N=4k+1 и N≡1(mod4).

Представим регистр НРЧ линейкой с движком по типу логарифмической. Для заданного числа N в движке создадим окно размером в N+1 позиций (разрядов). Путем перемещения движка вдоль НРЧ-линейки будем находить и фиксировать его положения парой чисел (x02, x12), которые размещены в крайних позициях окна (x02 – левая и x12 – правая) и оба значения будут соответствовать числовым квадратам. Разность между квадратами в крайних позициях окна, очевидно, будет совпадать с числом N=x12–x02.

Контуры НРЧ. Расстояние между квадратами двух последовательных нечетных чисел назовем контуром. Расстояние между ячейками с квадратами несмежных чисел назовем интервалом в НРЧ. Если сумма смежных нечетных чисел кратна числу 8, то она образует длину интервала, называемого контуром, а значение k является номером этого контура. Так смежные числа 11 и 13 образуют контур (11+13=24=3•8) с номером k=3 и длиной L(k)=24=k•8, а смежные нечетные числа 13 и 15 контур не образуют (13+15=28≠k•8).

Расстояния между нечетными квадратами-границами смежных чисел всегда образуют контуры и содержат число регистровых ячеек, равное 8k. Контуры в НРЧ образуют непрерывную последовательность с номерами k=1(1)∞, т.е. НРЧ образован заполненными числами ячейками последовательности контуров, длины которых кратны числу 8. Первый контур имеет длину L(1)=32–12=1•8, второй контур – L(2)=52–32=2•8=16, и т.д. Длины контуров образуют арифметическую прогрессию с разностью d=8 и а=8.

Заполнение всех позиций окна числами (интервалов) в каждом из фиксированных парой чисел (x02, x12) положений обладает закономерностью и характеризуется некоторым числовым инвариантом, устанавливаемым в работе. Так как пар (x02, x12) может быть больше одной, то будем снабжать ее числа индексом i.

Пример 1
Для N=105 (размер окна — 1) имеется 4 положения (4 пары квадратов разной четности), которые фиксируются. Контролировать будем положение левой границы окна. Начинаем перемещение движка от 1 вправо. Первое положение (остановка) возникает с появлением на левой границе окна числа x02=4, но правая граница при этом равна 109 – не квадрат, затем на левой границе окна оказывается квадрат x02=9, но справа число 114 – не квадрат, после прохода позиции с числом 15 в окне слева появляется число x02=16 – квадрат. Останавливаемся и проверяем число на правой границе окна. Там видим число x12=121 – тоже квадрат. Фиксируем это положение с контролем разности между квадратами: x112–x012=112–42=105.
&nbsp &nbsp &nbsp &nbsp &nbsp Продолжаем движение до прихода левого края окна в позиции 25, 36, 49 и видим, что для них правая граница на квадрат не попадает. Но когда в окне слева появляется число 64, справа видим число 169 – квадрат. Фиксируем это положение и выполняем контроль x122–x022=132–82=105.
&nbsp &nbsp &nbsp &nbsp &nbsp Следующее фиксируемое положение окна: слева число xо2=256, а справа x12=361, оба квадраты. Фиксируем и выполняем контроль разности между квадратами x132–x032=192–162=105.
&nbsp &nbsp &nbsp &nbsp &nbsp И, наконец, четвертое положение окна дает разность квадратов равную x142–x042=532–522=105.
&nbsp &nbsp &nbsp &nbsp &nbsp Дальнейшее движение прекращается, так как больше не существует пары квадратов, разность между которыми равна числу N=105, разность всех пар будет больше 105. Четвертую пару x142, x042 назовем предельной парой.



Полуконтуры. Место каждого четного квадрата вида (2k)2 во внутренней ячейке k-го контура. Эта ячейка делит длину L(k) контура на два m(k)=4k–1 и М(k)=4k+1 смежных нечетных числа (левое и правое), называемых полуконтурами. Заметим, что контуры и полуконтуры – это множества ячеек, заполненных натуральными числами, а m(k) и M(k) – мощности этих множеств. Множества ячеек последовательно следующих полуконтуров формируют НРЧ. Все множество нечетных чисел образуют два класса: левые числа N≡3(mod4) и правые числа N≡1(mod4). Длины полуконтуров первого контура, левое нечетное число 4•1–1=3 и правое нечетное число 4•1+1=5, в сумме образуют длину L(k=1)=3+5=8 контура с номером k=1.

Границы контура. При заданном номере k контура он полностью определяется, полуконтуры с длиной m(k)=4k–1 левый и М(k)=4k+1 правый, границы этого контура левая Гл(k)=(2k–1)2 и правая Гп(k)=(2k+1)2. Длина контура L(k)=m(k)+M(k)=Гп(k)–Гл(k)=8k. Четный квадрат Гч(k)=(2k)2 — общая граница полуконтуров.
&nbsp &nbsp &nbsp &nbsp &nbsp Действительно, разность границ Гп(k)–Гл(k)=(2k+1)2–(2k–1)2=4k2+2•2k+14k2+2•2k–1=8k.

Предельный контур. Любое нечетное число N можно представить как полуконтур в некотором контуре с номером kп. Такой контур единственный, так как контур слева от предельного имеет полуконтуры меньшие N, а справа — большие N. Число N левое или правое определяется с использованием четного квадрата предельного контура. Для левогоN=x12–x02, и x1 четное, для правого N=x12–x02 и x1 нечетное. Здесь роль границ полуконтуров играют значения x12 и x02. Эти границы определяются из выражений x1=(N+1)/2 и xо=(N–1)/2. Длина предельного контура с номером kп для числа N определяется по формуле



&nbsp &nbsp &nbsp &nbsp &nbsp Номер kп предельного контура числа N вычисляется через длину предельного контура kп=L(kп)/8. Теперь самое время пояснить введенные понятия числовым примером. Это специально подобранный пример, очень простой, способствующий лучшему пониманию изучаемого явления.

Пример 2
Пусть задано составное нечетное натуральное число (сннч) N=105=3•5•7. Для этого числа требуется найти предельный контур, его границы и определить его номер kп. Указать все пары квадратов (xi12, xi02), i=1(1)... разной четности, разность между которыми равна числу N=105.

Решение. Для лучшего усвоения содержания примера рекомендуется воспользоваться карандашом и бумагой. Известно, что сннч лежит между квадратами разной четности N=x12–x02. Определим левое или правое число заданного N=105≡1(mod4). Число N правое, т.е. это больший полуконтур в предельном контуре. Определим границы предельного контура через значение N, x1=(N+1)/2=(105+1)/2=53 и xо=(N–1)/2=(105–1)/2=52. Квадраты чисел 52 и 53 являются границами полуконтура.
Длина контура L(kп)=2•105–2=208=8•kп, откуда kп=208/8=26. Меньший (левый) полуконтур имеет длину m(kп)=L(kп)–М(kп)=208–105=103, является простым числом.
&nbsp &nbsp &nbsp &nbsp &nbsp Находим через kп границы предельного контура: левая Гл(kп)=(2kп–1)2=(2•26–1)2=512=2601 и правая Гп(kп)=(2kп+1)2=(2•26+1)2=532=2809. Длина контура через его границы определяется выражением L(kп)=Гп(kп)–Гл(kп)=2809–2601=208=8kп.
&nbsp &nbsp &nbsp &nbsp &nbsp Поскольку заданное сннч N=105 является полуконтуром в предельном контуре, то будем полагать, что ему соответствует лишь половина номера предельного контура, т.е. kп(N)/2=26/2=13.

Инвариант числа. Характеристику числа N в форме kп(N)/2 назовем инвариантом числа N, а дальше покажем, почему выбрано такое название. Инвариант может быть целым или дробным числом в зависимости от четности номера kп предельного контура.

Интервалы НРЧ для числа N. Далее рассмотрим возможности представления сннч N=105 разностями других пар квадратов разной четности. Число 105, как впрочем, и любое другое нечетное число можно представить суммой нечетного количества меньших смежных нечетных чисел. Полезность такого представления N следует из того, что границы всех нечетных чисел в НРЧ – квадраты, следовательно, и непрерывный интервал, представляющий N=105 из смежных нечетных чисел, будет иметь на границах квадраты. Количество слагаемых в сумме должно быть нечетным числом.

  1. Допустим, что таких слагаемых будет три. Очевидно, 105:3=35 и первое слагаемое будет равно 35–2=33, второе 35, а третье 35+2=37. Числа 33, 35, 37 образуют непрерывную последовательность нечетных смежных чисел, а 35 и 37 являются полуконтурами одного контура, так как их сумма 35+37=72 кратна 8. Этот контур имеет номер k=72/8=9. Число 33 принадлежит другому предшествующему контуру с номером k=8 и в нем является правым, т.е. большим. Этому числу 33 соответствует половина номера его контура, т.е. k/2=8/2=4. Интервалу из трех примыкающих друг к другу нечетных чисел длиной в 105 ячеек в НРЧ соответствует сумма номеров контуров в виде kп(N)/2=8/2+9=4+9=13.

    Для этого интервала определим границы. Большая граница интервала совпадает с правой границей большего контура с ��омером k=9, т.е. Гп(k)=(2•k+1)2=(2•9+1)2=192=x12=361. Меньшая граница интервала совпадает с левой границей меньшего из трех полуконтура, т.е. числа 33, находящегося в контуре с номером k=8, его граница – это четный квадрат удвоенного номера контура Гч(k)=Гл(k)=(2k)2=(2•8)2=x02=256. Проверка: N=Гп(9)–Гл(8/2)=361–256=105.
    Теперь для N=105 можем записать факторы N=x12–x02=(19+16)(19–16)=35•3=105.
  2. Пусть представление N имеет полуконтурами в сумме пять нечетных слагаемых. Очевидно, 105:5=21 и первое слагаемое будет равно 21–4=17, второе 21–2=19, третье 21, четвертое 21+2=23 и, наконец, пятое 21+4=25. Числа 17, 19, 21, 23, 25 образуют непрерывную последовательность нечетных смежных чисел, а 19, 21 и 23, 25 из них являются полуконтурами двух смежных контуров, так как их сумма 19+21=40=5•8 и 23+25=48=6•8 кратна 8. Эти контуры имеют номера k=40/8=5 и k=48/8=6.

    Число 17 является большим (правым) полуконтуром предшествующего контура с номером k=(15+17)/8=4. Этому числу соответствует половина номера меньшего контура k/2=4/2=2. Интервалу из пяти примыкающих друг к другу нечетных чисел длиной в 105 ячеек в НРЧ соответствует сумма номеров контуров kп(N)/2=4/2+5+6=2+5+6=13.

    Для этого интервала определим границы. Большая граница интервала совпадает с правой границей большего контура с номером k=6, т.е. Гп(k)=(2•k+1)2=(2•6+1)2=132=x12=169. Меньшая левая граница интервала совпадает с левой границей меньшего полуконтура, т.е. числа 17, находящегося в контуре с номером k=4. Меньшая граница – это четный квадрат удвоенного номера контура Гч(k)=Гл(k)=(2k)2=(2•4)2=x02=64.Проверка на разность квадратов: N=Гп(6)–Гч(4)=169–64=105. Теперь для N=105 можем записать факторы N=x12–x02=(13+8)(13–8)=21•5=105.
  3. Пусть слагаемых в представляющей число N сумме будет семь. Очевидно, 105:7=15 и первое слагаемое будет равно 15–6=9, второе 15–4=11, третье 15–2=13, четвертое 15, пятое 15+2=17, шестое 15+4=19 и, наконец, седьмое 15+6=21. Числа 9, 11, 13, 15, 17, 19, 21 образуют непрерывную последовательность нечетных смежных чисел, а 11, 13; 15, 17 и 19, 21 являются полуконтурами трех смежных контуров, так как их суммы 11+13=24=3•8; 15+17=32=4•8 и 19+21=40=5•8 кратны 8. Эти контуры имеют номера k=24/8=3, k=32/8=4 и k=40/8=5.

    Число 9 является большим (правым) полуконтуром предшествующего контура с номером k=(7+9)/8=2. Этому числу соответствует половина номера меньшего контура, т.е. k/2=2/2=1. Интервалу из семи примыкающих друг к другу нечетных чисел длиной в 105 ячеек в НРЧ соответствует сумма номеров контуров kп(N)/2=2/2+3+4+5=1+3+4+5=13.

    Для этого интервала определим границы. Большая граница интервала совпадает с правой границей большего контура с номером k=5, т.е. Гп(k)=(2•k+1)2=(2•5+1)2=112=x12=121. Меньшая граница интервала совпадает с левой границей меньшего полуконтура, т.е. числа 9, находящегося в контуре с номером k=2, это четный квадрат удвоенного номера контура Гч(k)=Гл(k)=(2k)2=(2•2)2=x02=16.Проверка: N=Гп(5)–Гч(2)=121–16=105.
    Теперь для N=105 можем записать факторы N=x12–x02=(11+4)(11–4)=15•7=105.


&nbsp &nbsp &nbsp &nbsp &nbsp Рассмотренный пример показывает, что для числа N=105 существуют четыре пары квадратов разной четности, расстояние в НРЧ между которыми равно 105. Каждая из найденных пар квадратов позволяет решить задачу факторизации сннч N=105, исключая предельную пару – она дает тривиальное разложение на множители.

&nbsp &nbsp &nbsp &nbsp &nbsp Остается открытым очень важный вопрос, где брать, как получать для произвольного числа N пары (xо2, x12) квадратов?

&nbsp &nbsp &nbsp &nbsp &nbsp Анализ результатов примера 2 показывает, что разные пары квадратов (xоi2, x1i2), i=1(1)4, получаются при разных представлениях инвариантаkп(N)/2=13 в виде суммы с разным числом слагаемых. Сами такие суммы можно рассматривать как разбиения числа 13 специального вида. Все слагаемые суммы представляют собой отрезок НРЧ, в котором одно из крайних слагаемых в сумму включается лишь своей половиной. Определение такого слагаемого диктуется принадлежностью числа N к классу левых или правых нечетных чисел.

Если N – левое, то половина берется от большего слагаемого:
  • N=183 – левое нечетное, 183≡3(mod4), половина берется от большего слагаемого в представлении инварианта суммой kп(183)/2=23=15+16/2; инвариант целое число;
  • N=203 – левое нечетное, 203≡3(mod4), половина берется от большего слагаемого в представлении инварианта суммой kп(203)/2=25.5=6+7+8+9/2; инвариант не целое число;

Если N – правое, то половина берется от меньшего слагаемого:
  • N=213 – правое нечетное, 213≡1(mod4), половина берется от меньшего слагаемого в представлении инварианта суммой kп(213)/2=26.5=17/2+18; инвариант не целое число;
  • N=217 – правое нечетное, 217≡1(mod4), половина берется от меньшего слагаемого в представлении инварианта суммой kп(217)/2=27=6/2+7+8+9; инвариант целое число;


Таким образом, из рассмотренных фактов следует алгоритм решения задачи факторизации чисел:
  1. Для заданного сннч N найти инвариант kn/2.
  2. Инвариант представить разбиением специального вида kn/2=a+(a+1)+(a+2)+...+(a+t-1)+kд/2, где kд – дополнительный номер крайнего контура, левый или правый.
  3. Для крайних слагаемых вычислить границы: левую Гл=x02 и правую Гп=x12.
  4. Разность границ представить произведением скобок N=x12–x02=(x1+x0)(x1–x0)=pq.


Рассмотренный материал позволяет сделать следующие выводы.
  1. Модель составного нечетного натурального числа, представляемого в понятиях контуров – полуконтуров НРЧ позволяет установить инвариант такого числа, как функцию номеров представляющих число контуров. Инвариант kп(N)/2 сохраняет значение независимо от того разностью какой пары квадратов ( при наличии нескольких пар квадратов ) представляется сннч N=xi12–xi02, i=1(1)t, где t – число представляющих пар. N=105=xi12–xi02=532–522=192–162=132–82=112–42
  2. Значение инварианта устанавливается элементарной обработкой заданного числа N при установлении номера предельного контура. Инвариант может быть как целым, так и дробным числом. Относительно предельного контура сформулированы и доказаны теоремы, которые в посте не приводятся, но используются.
  3. Предлагаемая модель НРЧ в терминах и понятиях контуров – полуконтуров открывает возможность формулирования и исследования задачи факторизации нечетных чисел за приемлемое для практических приложений время.