Pull to refresh

ГЭС изнутри

Reading time5 min
Views62K
Теоретически с гидроэлектростанциями все понятно — вода идет из верхнего бьефа в нижний, крутит рабочее колесо турбины. Турбина вращает генератор, а тот вырабатывает электричество…
Интересны детали.



Хозяйке на заметку: чтобы получить 1 киловатт-час электроэнергии, надо спустить с высоты 27 метров 14 тонн воды.

(Детали подсмотрены в процессе посещения девяти разных гидроэлектростанций).

Перефразируя классика: все тепловые электростанции похожи друг на друга, каждая гидроэлектростанция устроена по-своему. Иными словами, типовых ГЭС не существуют, все ГЭС разные. У каждой свой расход воды, напор, рельеф, грунт, климат, близость моря, объем водохранилища…

Вот, например, вроде бы обычный машинный зал станции. За исключением того, что все окна в нем — искусственные, с подсветкой.



Все потому, что машинный зал находится в скале на глубине 76 метров.

Это первая в СССР подземная гидроэлектростанция, с поверхности к ней идут четыре водовода диаметром 6 м. А это шахта, также вырубленная в скальном основании, для извлечения из глубинного машзала оборудования в случае его ремонта/замены:



Затворы и сбросные сооружения


В идеале вся вода должна идти через турбины и давать энергию. Но не всегда это возможно.

Часть воды приходится сбрасывать мимо ГЭС:
— при ремонте гидроагрегатов;
— при весенних паводках, если нет водохранилища многолетнего регулирования (а его часто нет);
бывает, что в каскаде ГЭС (станций, стоящих на одной реке) пропускная способность верхней станции больше, чем нижней; тогда нижняя должна пустить часть воды мимо турбин, иначе ее просто затопит;
— иногда открывают холостой водосброс по запросу рыбзаводов для пропуска мальков вниз по течению;
— и т.д.

Холостой водосброс Беломорской ГЭС — это три затвора.



Довольно много внимания уделено вопросу резервирования, потому что не суметь вовремя понизить уровень в водохранилище — это чревато. Любой из затворов здесь можно опустить/поднять козловым краном, два из трех — электрическими лебедками. В крайнем случае можно и вручную (со скоростью, правда, 3 см/мин).



Затвор поднят, идет холостой сброс для водозабора города Беломорска, находящегося ниже по течению:



Для борьбы с обледенением затворов применяют индукционный подогрев. На обогрев данного экземпляра, например, требуется 150 кВт:



Иногда для этого же делают барботаж — пропускают воздух из глубины вдоль затвора; видим шланг системы сжатого воздуха:



На сбросе предусматривают мероприятия для гашения кинетической энергии потока — водобойные колодцы, столкновение потоков, ступени или, как здесь, на Волховской ГЭС — водобойная плита с гасителями:



О рыбе


На Нижнетуломской ГЭС сделан специальный рыбоход для семги, поднимающейся на нерест вверх по течению. Конструкция имитирует собой полукилометровый горный ручей с камнями на дне, зигзагообразными проходами и местами для отдыха рыбы.





Интересно, что в период нереста на ГЭС отключают ближний к рыбоходу 4-й гидроагрегат, чтобы семга могла услышать шум рыбохода и направиться именно туда.

На Верхнетуломской станции рыбоход сделали в виде 2-километрового тоннеля с подсветкой и специального рыболифта, но такая конструкция оказалась неудачной, рыба не пошла. Из положения вышли — тоннель превратили в рыбзавод и пускают в него теплую воду от охлаждения генераторов. И малькам хорошо, и энергоэффективность налицо. Откуда в генераторе теплая вода — см.ниже.

Безопасность


Напомню, что при аварии-2009 на Саяно-Шушенской ГЭС после прорыва воды в машинный зал было быстро потеряно электропитание собственных нужд станции, в результате чего сброс затворов на водоприемниках пришлось производить вручную. По следам этого происшествия на ГЭС активно занялись резервным питанием — аварийные дизель-генераторы, аккумуляторы.





Это тоже элемент безопасности — аэрационные трубы в верхней части водоводов Кондопожской ГЭС:





Толщина стальных стенок водоводов сравнительно небольшая — 12 мм. Кольца водоводов рассчитаны на большое внутреннее давление или небольшой вакуум. Но если закрыть верхние затворы и водовод резко опорожнить, то внутри них возникнет глубокий вакуум, и трубы могут деформироваться. Аэрационные трубы впустят воздух при опорожнении, и все будет хорошо.

Остатки деревянного водовода 1930-х годов:



На случай, если во время работы турбинный водовод все же прорвется, предусмотрена защитная стенка (в центре кадра):



Благодаря ей вода пойдет не направо — на административное здание, а обойдет станцию слева и по выемке уйдет в нижний бьеф.

Управление и контроль


Сейчас мы находимся между турбиной и генератором и наблюдаем соединяющий их вал. Слева видна схема гидроагрегата с выведенными на нее манометрами, показывающими давления в системе смазки.



Под ногами — гидравлические приводы направляющего аппарата:



Больше параметров можно увидеть в машинном зале.

Температуры воды и воздуха, уровни воды в бьефах:



Мнемосхема на дисплее.
Этот гидроагрегат не работает (мощность 0 МВт, направляющий аппарат закрыт, частота вращения ротора 0 %).



Хорошо видно, как из спиральной камеры турбины (внизу) вода отбирается и подается на охладители генератора (он в центре, красного цвета, охладители А и Б) и для смазки подпятника, верхнего (ВГП) и нижнего (НГП) генераторных подшипников. Да-да, они смазываются водой. Отсюда и берется теплая вода для рыбзавода.

В правой части виден красный бак с маслом — это гидравлическая система управления направляющим аппаратом. Здесь же показываются давления, расходы и уровни всех жидкостей.

Информация о вибрациях:



В скобках: официально причиной разрушения гидроагрегата на той же Саяно-Шушенской было названо усталостное разрушение шпилек крепления крышки турбины из-за вибраций, возникавших при переходах гидроагрегата через диапазон «запрещенной зоны» (есть и другие мнения, но сейчас не об этом).

Где находится «запрещенная зона», увидим на центральном пульте управления ГЭС:





Гидроагрегаты Г1, Г3, Г4 в работе, Г2 остановлен. На черном фоне — мощность, которую вырабатывают генераторы 38,1/38/38 МВт соответственно. У Г3 и Г4 столбики красные, потому что они работают на полную мощность, у Г1 еще есть резерв. За столбиками видна красная зона — это как раз тот диапазон мощности, в котором гидроагрегату нежелательно работать и который при пуске/останове надо побыстрее проскочить.

Кстати, знающий человек еще снаружи здания скажет, какой из гидроагрегатов не работает:



Вторая пара противовесов поднята — значит, затворы на турбинных водоводах агрегата номер 2 опущены.

Весьма активно внедряют удаленное управление.
Так, например, эта станция на 60 МВт работает круглосуточно, но персонал на ней бывает только днем и в рабочие дни, в остальное время — управляется по телемеханике с головной ГЭС:



ГЭС работают по т.н. диспетчерскому распоряжению, которое регламентирует когда и сколько станции выдавать электроэнергии. Поскольку ГЭС — самые маневренные источники энергии (быстро запускаются и быстро останавливаются), то они служат для покрытия пиковых нагрузок и их выработка меняется в зависимости от времени суток и дня недели. В отличие от тепловых и атомных электростанций, которые обеспечивают базовую часть потребления и работают в относительно стабильном режиме.

Диспетчерское распоряжение на экране (сорри за космическое качество снимка; по оси абсцисс — часы, по оси ординат — мощность):



Диспетчерское задание учитывает взаимное влияние ГЭС в каскаде, уровни воды в их водохранилищах, запросы потребителей по воде и электричеству и т.д. и на основании этого распределяет выработку энергии между станциями. Любопытно, что на реке Паз на границе между Норвегией и Россией работает 5 российских и 2 норвежских ГЭС, а сама река вытекает из финского озера. И ничего, как-то договорились.
Tags:
Hubs:
Total votes 126: ↑125 and ↓1+124
Comments114

Articles