Можно увидеть многое, просто наблюдая
— Йоги Бера


Читатель спрашивает:
А что такое «наблюдение»? У меня есть два примера, которые я тем меньше понимаю, чем больше о них думаю: эксперимент Юнга и теорема Белла. Чем больше я о них думаю, тем меньше я понимаю, что на самом деле означает «наблюдение».


Давайте начнём с рассмотрения этих двух классических примеров странности квантового мира.

image

Сначала возьмём эксперимент Юнга. Давно известно, что частицы ведут себя не так, как волны. Если вы возьмёте экран с двумя щелями и будете кидать туда камушки, или пульки, или другие макроскопические предметы, большинство камушков будет задержано экраном. Несколько пролетят через щели. Можно ожидать, и по сути, так и происходит, что несколько камушков пролетят через левую щель, и несколько – через правую.

image

И у вас будут две кучки камушков, составляющих кривую в виде колокола (нормальное распределение), по одной для каждой щели. И это происходит вне зависимости от того, смотрите вы на камушки в момент броска, или нет. Побросали камушки, получили такую картинку. Всё.

А что, если у вас есть бассейн с водой, и вы с одной его стороны создаёте волны? Вы можете разместить экран с двумя щелями, чтобы волны могли проходить только через щели. В результате у вас появится два источника волн.



В результате вы получите картину интерференции, где есть пики и провалы, а также промежутки, где будет просто средняя высота воды без волн. Это называется интерференцией – иногда пики и провалы складываются и усиливают друг друга, иногда пик складывается с провалом и взаимно компенсируются.

image

Эксперимент Юнга был серией экспериментов, проводимых с 1799 по 1801 года. Через две щели светили светом, чтобы понять, будет он вести себя, как частицы, или как волны. Теперь этот стандартный эксперимент студенты повторяют в лабораториях. В результате получается такая картина:

image

Очевидно, тут происходит интерференция. Открытый в начале 1900-х фотоэлектрический эффект, согласующийся с идеей квантификации света на фотоны с разными энергиями, вроде бы говорил о том, что свет состоит из частиц, а не из волн – и всё равно он создавал такую интерференционную картину, проходя через две щели.

Дальше ещё страньше. В 1920-х физики решили провести тот же эксперимент, только с электронами вместо фотонов. Что случится, если направить поток электронов (например, от радиоактивного источника, испытывающего бета-распад) на две щели с экраном позади них? Какую картину мы увидим?

image

Как ни странно, источник электронов также даёт интерференционную картину!

«Погодите-ка»,- сказали все. «Каким-то образом электроны интерферируют с другими электронами от источника распада. Давайте-ка будем пускать их поодиночке и посмотрим, что получится на экране».

Поэтому они так и сделали, и начали смотреть, какая картинка будет вырисовываться после каждого электрона. Вот, что они увидели.

image

Получилось, что каждый электрон интерферировал сам с собой, проходя через щели! Что и привело физиков к вопросу о том, как это происходит – раз электроны являются частицами, они могут проходить только через одну из щелей, словно камушки или пульки.

Так как же? Они сделали «ворота» (в которые можно светить фотонами, чтобы те взаимодействовали с тем, что проходит через щель), чтобы определить, через какую щель проходит каждый конкретный электрон. В результате, конечно, получилось, что электрон проходил через одну из двух щелей. Но затем, посмотрев на получающуюся картинку, они обнаружили, что она превратилась в картину, нарисованную частицами, а не волнами. Иначе говоря, электрон будто бы знал, наблюдаете вы за ним или нет!

image

Или, как говорят физики, акт наблюдения изменяет результат эксперимента. Это может показаться странным, но именно это и происходит во всех квантовых системах, организованных таким образом: всё работает так, как будто оно находится в волновой суперпозиции всех возможных результатов, но как только вы делаете ключевое «наблюдение», оно заставляет систему выдать вам один реальный ответ.

Другой пример, о котором говорит наш читатель, это квантовая запутанность.

image

Многие частицы можно создать так, что они будут находиться в запутанном состоянии: когда вы будете знать, например, что у одной должен быть положительный спин, а у другой – отрицательный (например, ±½ для электронов, ±1 для фотонов, и т.п.), но не знаете, у какой из них какой спин. Пока вы не совершите измерение, вам придётся обращаться с ними так, будто каждая частица находится в суперпозиции позитивного и негативного состояния. Но когда вы «наблюдаете» свойства одной из них, вы сразу же узнаёте о соответствующем свойстве другой.

image

Это странно – как и в случае с электронами, проходящими через щель, частицы ведут себя по разному, в зависимости от того, находятся они в суперпозиции состояний, или же их заставили принять одно из «чистых» состояний. В теории можно запутать две частицы, передвинуть одну из них на расстояние светового года, пронаблюдать первую, узнать её спин, и сразу же узнать спин другой. Вам не надо будет ждать год, чтобы сигнал пришёл к вам со скоростью света.

Если вам кажется, что это странно, то так оно и есть. Сам Эйнштейн был обескуражен этим, и решение этого, сделанное Беллом, состоит в том, что квантовая запутанность – это нелокальный феномен.

image
Если вы наблюдаете две частицы, а затем разводите их на большую дистанцию, то получаете (а). Если вы запутываете их, а затем разводите, они обе не определены, пока вы не одну из них не наблюдали (b). Но, про��аблюдав одну из них, вы тут же узнаёте состояние другой (с).

При этом тот, кто находится рядом с частицей, отодвинутой на световой год, не сможет заметить в ней никаких изменений, когда вы измерите свою. Только после того, как вы сведёте ваши частицы вместе (или передадите информацию о них, что ограничивается скоростью света), вы сможете пронаблюдать состояния обеих частиц.

Теперь можно ответит на вопрос читателя: что есть наблюдение?

image

Несмотря на то, что вы могли подумать, прочтя эти строки, наблюдение не имеет ничего общего с вами, с наблюдателем. Все разговоры про измерения и наблюдения прячут правду – чтобы произвести эти измерения, вам надо сделать так, чтобы квантовая частица провзаимодействовала с той, которую мы пытаемся наблюдать. И если нам нужно провести эти измерения, нам нужно, чтобы это взаимодействие прошло с определённым уровнем энергии.

Это не имеет ничего общего с вами или с «актом наблюдения», а зависит от того, провзаимодействуете ли вы с достаточной энергией для того, чтобы «сделать наблюдение», или, иначе говоря, удастся ли вам перевести частицу в одно из квантовых состояний.

image

Для электрона, проходящего сквозь щель, это означает взаимодействие с фотоном, который ограничит его позицию достаточно для того, чтобы он явно прошёл через одну из щелей. Для фотона со спином +1 или -1 это означает проведение измерения чувствительного к его поляризации, что означает взаимодействие, чувствительное к типу электромагнитного поля, создаваемого фотона.

image

Поэтому, наблюдение – это квантовое взаимодействие, достаточное для определения квантового состояния системы.