Издавна мы передаем сигналы при помощи различных носителей информации. Мы использовали сигнальные костры, барабаны, голубей, электричество. И в итоге опять пришли к свету — к передаче информации по оптике. А теперь изучаем сцепленные фотоны. Все мы знаем, что напрямую через квантовую сцепленность передать можно ключ, но не иную информацию. А если не напрямую, но при помощи? Кому интересно, добро пожаловать под кат.

Квантовая сцепленность


Для начала попробую пояснить эффект квантовой сцепленности:

Есть пара носков. Каждый носок из пары сразу после момента создания сцепленности помещен в отдельный ящик и отправлен своему адресату. В момент, когда один из адресатов открывает посылку, он видит правый (или левый) носок и тут же получает информацию о том, какой носок у второго адресата, как бы далеко тот ни находился. Причем заранее точно предсказать, будет ли носок правый или левый, невозможно. А самое главное, что и делает квантовую физику столь отличной от физики классической: пока носки не открыли, они и сами «не знают», какой правый, а какой левый. Но как только один из носков подвергся наблюдению и «определился», второй в тот же момент обретает строго противоположное свойство. Более подробно, с доказательством, можно узнать по запросу «Теорема Белла».

Как видим, передать осмысленную информацию напрямую через это свойство невозможно. Но есть обходной путь.

Принцип передачи носителя информации и сигнала


Итак, квантовому спутнику связи QUESS удалось передать запутанные фотоны между парами обсерваторий, находившихся на расстоянии до 1203 километров. Ученые подтвердили соотношение: одно событие успешной передачи на шесть миллионов отправленных фотонных пар. Соотношение сигнал/шум, казалось бы, не вызывает оптимизма, однако сам факт успешности передачи переводит задачу работы с подобным носителем информации из невозможных в инженерную задачу борьбы избыточности и шума.

Надеюсь, со временем мы придумаем много способов использовать квантовую сцепленность. Опишу один из, по-моему, возможных.

Первый этап: устройство разделяет сцепленные пары и передает на вышки «А» (будущий условно передатчик) и «В» (будущий условно приемник) на хранение запутанные фотоны последовательной цепочкой. Носитель информации передан.

Второй этап: вышка «А» проводит измерение (наблюдение) первого фотона в цепочке, определяя момент начала передачи сообщения, запускает таймер «Т», за время которого проводит измерение тех фотонов в цепочке, которые будут условными единицами и не затрагивает те фотоны, которые будут условным нулем; посредством слабого измерения аппаратура вышки «В» определяет изменение состояния первого фотона и запускает таймер «Т».

Третий этап: по окончании заданного времени «Т» аппаратура вышки «В» фиксирует состояние фотонов в цепочке посредством слабого взаимодействия, где потерявшие сцепленность фотоны — 1, оставшиеся сцепленными — 0.

Так же, например, триггером начала и конца наблюдения цепочки может быть таймер синхронизированного заранее времени.

Таким образом, нас не интересует, каков именно фотон в паре. Нас интересует сам факт: сохранилась сцепленность, или нет. Сигнал передан.

Это концепция из идеального мира, где ни один фотон не потерялся, цепочка была собрана правильно, и так далее. Проблемы реального мира — это проблемы борьбы избыточности и шума, а также сложность в создании систем хранения, воздействия, и контроля частиц.
Но главное — принципиальная возможность передачи сигнала посредством квантовой сцепленности.

Взаимосвязь носителя информации и сигнала


Сама возможность подобного способа работы с сигналом позволяет нам взглянуть на информацию под новым углом. Получается, что в момент передачи носителя информации (цепочки сцепленных частиц) в рамках действующих законов, не быстрее скорости света, мы передаем всю возможную информацию, которую только можно таким образом закодировать.

Приведу аналогию: вы заказали книгу в библиотеке, встречаете курьера, а у него за спиной, невидимые вам, все книги из библиотеки, знаете вы о них, или нет. Вы называете автора и название, забираете свою одну книгу, и остальные тут же уничтожаются.
До следующего курьера из библиотеки.

Еще аналогия: я пишу слово «коса» и у вас в мозгу возникают образы, которые могут быть инициированы этим носителем информации. Однако для передачи сигнала требуется конкретизация: «русая» или «деревянная» или «песчаная». На других языках это сочетание символов «коса» может означать что-то иное, и информация содержится в носителе независимо от того, знаем ли мы ее. Мы просто не имеем уточняющего триггера и памяти для нужного сигнала.

Так и с цепочкой частиц: в момент передачи к вышкам мы передали всю возможную информацию (возможные варианты), оставаясь в рамках знакомой физики, не быстрее скорости света, а фактом измерения лишь произвели уточнение.

В целом, нас ждет увлекательное время в попытках объяснить (и понять), что условный шпион, протащив пару запутанных частиц на объект и нажав в определенное время кнопку (или не нажав, оставив частицы сцепленными) не передал через парные частицы «в штабе» информацию быстрее скорости света. Он пер свою часть информации как улитка на своем горбу. А кнопкой лишь уточнил, выбрал, конкретизировал. Нам еще предстоит разобраться, что он сделал. Но военным понравится. Понравятся шахты, которые невозможно экранировать от команды, и без управляющих проводов. Понравится возможность отдать приказ на любое расстояние, через любые глушилки, на заранее взятый с собой приемник с контейнером частиц. Думаю, именно они, опять, будут двигать технологию.

Или хирург, для которого ��ышки по всему миру всю ночь накапливали носители информации (запутанные частицы) на разных концах планеты со всем почтением к скорости света, будет делать операцию и видеть мгновенные реакции хирургического робота за десятки тысяч километров от своего кабинета. Он будет потом в интервью говорить, что все происходило мгновенно. А читающий это физик будет ворчать, что вся информация обо всех возможных действиях хирурга была передана еще ночью (с точки зрения физики), с нормальной скоростью. А хирург лишь «уточнил» своими действиями, как именно он прооперировал.

Или взаимодействие информации и, например, свойства локальности мира. Это свойство означает, что событие в одной точке, скажем, планеты не может мгновенно повлиять на физическую действительность в другой точке планеты. Тогда, если условное нажатие кнопки посредством эффекта квантовой запутанности мгновенно зажжет лампочку на другой стороне планеты, значит информация о влияющем событии содержалась в носителе информации до того, как влияющее событие произошло.

Получается, мы находимся на пороге следующего шага эволюции сигнала. При помощи квантового мира мы разделяем скорость прохождения сигнала и скорость распространения носителя информации. Обеспечив запас сцепленных пар с нормальной скоростью, в тот момент, когда критично передать сигнал практически мгновенно, мы можем, пусть пока теоретически, это осуществить.