Многие испытывают трудности при соединении по эфиру радиомодулей nRF24L01. Об этом свидетельствует тема на форуме Амперки, открытая в конце 2014г. За пять с небольшим лет в теме накопилось более 120(!) страниц. Это при том, что автор темы не просто обозначил проблему, а поделился своим трехнедельным опытом победного для него боя. Кроме того, он тут же — в первом сообщении создал навигатор по страницам темы, где приводит ссылки на решения проблемы другими.
Я тоже не из тех счастливчиков, которым легко удалось связать радиомодули. Ниже — мой подход к решению проблемы.
Модули nRF24L01 работают в полудуплексном режиме. Это как разговор по рации: каждый из корреспондентов в один момент времени либо говорит, либо слушает. То есть, каждый из двух узлов работает в режиме и приемника и передатчика: передатчик, отправив сообщение ждет на подтверждение приема сообщения со стороны приемника.
Как правило, все тесты, которые мне встречались в Инете, сводятся к проверке работы и качества связи пары радиомодулей в полнофункциональном режиме, когда передатчик, послав пакет, ждет на подтверждение приема пакета приемником.
Я же разделил эту задачу на несколько простых задачек. Вначале модули проверяются на работоспособность и правильность подключения (шаг 1), затем один из пары работающих радиомодулей тестируется на работу в режиме передатчика без ожидания отклика с приемника (шаг 2) и последний этап — улучшение качества связи в этой связке передатчик-приемник (шаг 3).
Для общего представления — картинка с прототипом:
Итак ...
Шаг 1
Загрузить в контроллер платы Ардуино скетч сканера эфира, который можно найти среди примеров Arduino IDE: Файл -> Примеры -> RF24 -> scanner. Ниже под спойлером есть этот скетч с несущественным изменением. В нем изменено время между стартом и остановкой сканирования одного канала с 128 мксек на 512 мксек. Увеличение времени позволило за один цикл сканирования всего диапазона выявлять больше источников помех и сигналов. Это равнозначно замене результата измерений в канале на сумму четырех соседних результатов в этом канале до изменения времени сканирования. При этом, время прохода всего прослушиваемого диапазона сканером увеличилось несущественно: примерно с 8 до 10 сек.
В разных скетчах адрес канала в командах приводится в разных форматах: в одних — ...(0x6f), в других — ...(112). Перевод с одного формата в другой станет понятным с примера перевода. Например, для (0x1а) — это: (1+1)*16 + а = (1+1)*16 + 10 = 42. Отсчет каналов начинается с частоты 2,4 ГГц, далее идет увеличение частоты на 1 МГц с увеличением номера канала на 1.
/*
Победа над nRF24L01: на три шага ближе, сканер эфира
https://habr.com/ru/post/476716/
*/
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
Channel scanner
Example to detect interference on the various channels available.
This is a good diagnostic tool to check whether you're picking a
good channel for your application.
Inspired by cpixip.
See http://arduino.cc/forum/index.php/topic,54795.0.html
*/
#include <SPI.h>
#include "nRF24L01.h"
#include "RF24.h"
#include "printf.h"
//
// Hardware configuration
//
// Set up nRF24L01 radio on SPI bus plus pins 9 & 10
RF24 radio(9, 10); //Arduino UNO
//
// Channel info
//
const uint8_t num_channels = 128;
uint8_t values[num_channels];
//
// Setup
//
void setup(void)
{
//
// Print preamble
//
Serial.begin(9600);
Serial.println("Scanner Air On");
printf_begin();
//
// Setup and configure rf radio
//
radio.begin();
radio.setAutoAck(false);
// Get into standby mode
radio.startListening();
radio.printDetails();
delay(5000);
// Print out header, high then low digit
int i = 0;
while ( i < num_channels )
{
printf("%x", i >> 4);
++i;
}
printf("\n\r");
i = 0;
while ( i < num_channels )
{
printf("%x", i & 0xf);
++i;
}
printf("\n\r");
}
//
// Loop
//
const int num_reps = 100;
void loop(void)
{
// Clear measurement values
memset(values, 0, sizeof(values));
// Scan all channels num_reps times
int rep_counter = num_reps;
while (rep_counter--)
{
int i = num_channels;
while (i--)
{
// Select this channel
radio.setChannel(i);
// Listen for a little
radio.startListening();
delayMicroseconds(512);
radio.stopListening();
// Did we get a carrier?
if ( radio.testCarrier() )
++values[i];
}
}
// Print out channel measurements, clamped to a single hex digit
int i = 0;
while ( i < num_channels )
{
printf("%x", min(0xf, values[i] & 0xf));
++i;
}
printf("\n\r");
}
Далее подключаем модуль nRF24L01 к плате Ардуино или любому прототипу, собранному, допустим, на контроллере ATMEGA328P. Я собрал два образца на платах для прототипирования на контроллере ATMEGA328P по схеме контроллер + резонатор. Один образец подключаю к компу через плату Arduino UNO, а второй — через конвертор USB/TTL.
Мощность стабилизатора платы Arduino UNO вполне приемлема для подключения дополнительной импульсной нагрузки такой, как nRF24L01+ c адаптером 5В/3,3В для этого модуля или без адаптера.
На мониторе последовательного порта Arduino IDE увидите нечто похожее:
Если вы увидели похожую картинку — тест на работоспособность (исправность) радиомодуля и правильность его подключения пройден успешно. Замените радиомодуль другим, с которым планируете работать дальше.
Обратите внимание на чистый диапазон, начиная с канала 4а. У меня он остается чистым даже, если на расстоянии нескольких метров работает старая СВЧ-печь — мощный источник помех в этом диапазоне. А в общем-то, в Интернете рекомендуют выбирать каналы для своих проектов выше «60».
Если на каналах — шум, но радиомодуль определяется (смотрим преамбулу на мониторе Arduino IDE, подробно тут) — это однозначно копия. Не отчаивайтесь — ее тоже можно запустить.
Обращаю ваше внимание — на этом этапе не стоит выполнять никаких работ с паяльником. Тем же, кто не увидел похожей картинки и записал на видео процесс распаковки товара, разумно обратиться в торговую точку за заменой или возвратом денег.
Шаг 2
По схеме, аналогичной первой, собираем второй радиоузел. Это будет передатчик. В его контроллер загружаем скетч передатчика (под спойлером).
/*
Победа над nRF24L01: на три шага ближе, передатчик
https://habr.com/ru/post/476716/
*/
#include <SPI.h>
#include <RF24.h>
RF24 radio(9, 10); // порты D9, D10: CSN CE
const uint32_t pipe = 111156789; // адрес рабочей трубы;
byte data;
void setup() {
Serial.begin(115200);
Serial.println("TransmitterTester ON");
radio.begin(); // инициализация
delay(2000);
radio.setDataRate(RF24_1MBPS); // скорость обмена данными RF24_1MBPS или RF24_2MBPS
radio.setCRCLength(RF24_CRC_8); // размер контрольной суммы 8 bit или 16 bit
radio.setPALevel(RF24_PA_MAX); // уровень питания усилителя RF24_PA_MIN, RF24_PA_LOW, RF24_PA_HIGH and RF24_PA_MAX
radio.setChannel(0x6f); // установка канала
radio.setAutoAck(false); // автоответ
radio.powerUp(); // включение или пониженное потребление powerDown - powerUp
radio.stopListening(); //радиоэфир не слушаем, только передача
radio.openWritingPipe(pipe); // открыть трубу на отправку
}
void loop() {
data = 109;
radio.write(&data, 1);
Serial.println("data= " + String(data));
}
Передатчик без пауз в работе передает сигнал на канале 6f (112).
Подаем питание на сканер эфира и передатчик. Присмотритесь что творится на канале 6f и соседних с ним каналах. Сканер эфира при включенном передатчике рано или поздно прорисует единички или другие одноразрядные числа в шестнадцатиричном исчислении в области 6f, на который запрограммирован передатчик. Наберитесь терпения на 1 — 2 минуты, особенно при работе со сканером из примеров.
Увидев сигнал от передатчика делаем следующий шаг.
Шаг 3
Загружаем вместо сканера скетч приемника (под спойлером).
/*
Победа над nRF24L01: на три шага ближе, приемник
https://habr.com/ru/post/476716/
*/
#include <SPI.h>
#include "nRF24L01.h"
#include "RF24.h"
RF24 radio(9, 10); // порты D9, D10: CSN CE
const uint32_t pipe = 111156789; // адрес рабочей трубы;
byte data[1];
int scn; //счетчик циклов прослушивания эфира
int sg; //счетчик числа принятых пакетов с передатчика
void setup() {
Serial.begin(9600);
Serial.println("ReceiverTester ON");
radio.begin(); // инициализация
delay(2000);
radio.setDataRate(RF24_1MBPS); // скорость обмена данными RF24_1MBPS или RF24_2MBPS
radio.setCRCLength(RF24_CRC_8); // размер контрольной суммы 8 bit или 16 bit
radio.setChannel(0x6f); // установка канала
radio.setAutoAck(false); // автоответ
radio.openReadingPipe(1, pipe); // открыть трубу на приём
radio.startListening(); // приём
}
void loop() {
if (scn < 1000)
{ // прослушивание эфира
if (radio.available())
{
radio.read(data, 1);
if (data[0] == 109) {
sg++;
}
}
} else {//всего принято
{
Serial.println("Принято: " + String(sg) + " пакетов");
sg = 0;
}
scn = 0;
}
scn++;
delay(20);
if (scn >= 1000) scn = 1000; //защита от переполнения счетчика
}
Логика работы приемника такая же, как и у сканера эфира, но он в отличие от сканера принимает сигналы только на частоте передатчика 6f и, как и сканер, не посылает автоответ. Скорость обмена информацией и размер контрольной суммы у приемника такие же, как у передатчика. После каждых 1000-и циклов прослушивания счетчик числа циклов обнуляется и выводится инфа о количестве принятых пакетов с передатчика в монитор порта Arduino IDE.
Включаем передатчик и приемник. Если приемник принимает хотя бы каждый третий пакет — это уже успех. У меня не получилось. Приемник по непонятным причинам принимал максимум 50 пакетов.
Подумал о увеличении мощности передаваемого сигнала с помощью дополнительной антенны. Для начала, подключил зажимом монтажный провод «папа-мама» к «корню» штатной антенны передатчика. И счастье привалило: сразу 999 принятых пакетов — максимально возможное число из 1 000!
Юзерам, которые захотят сделать все грамотно, придется поработать. Дополнительная антенна в данном случае — это отрезок коаксиального кабеля с волновым сопротивлением 50 Ом и длиной 115 мм. Антенна подключается к выводу 13 (АNT2) микросхемы nRF24L01+. Схему подключения и номиналы нескольких недостающих smd компонентов, которые надо поставить на плату радиомодуля, можно найти на принципиальной электрической схеме nRF24L01+ тут. Впрочем, есть альтернатива — в магазин за NRF24L01+PA+LNA
Теперь обязательно припаиваем между пинами GND и VCC обеих радиомодулей по два конденсатора. Керамический конденсатор, выполняющий роль ВЧ-фильтра, емкостью не менее 0,15 мкФ (чем больше, тем лучше) и электролит емкостью около 10 мкФ (можно и больше, но бесполезно) — это НЧ-фильтр. ВЧ-фильтр шунтирует высокочастотные помехи по цепи питания радиомодуля, а НЧ-фильтр сглаживает пульсации питания. Для надежности, цепи питания радиомодулей лучше непосредственно подпаять к пинам контроллеров.
Тут не могу не упомянуть о решении, предложенном GennPen в комментариях. Это установка на платах nRF24L01+ отсутствующего конденсатора С6 (1...2pF). Конденсатор будет выполнять роль пассивной нагрузки. Без пассивной нагрузки модули nRF24L01+ со встроенной антенной «захлебываются» и часто нормально работают только на пониженных мощностях передатчика.
После того, как удалось установить наилучшую связь в паре передатчик — приемник, можно провести тестирование на определение дальности связи радиомодулей, задав мощность передатчика и свои критерии качества связи, допустим, 300 принятых пакетов из 1000. У меня пара в режиме усилителя PA_MAX обеспечивает связь «999:1000» в пределах квартиры через 3 кирпичных простенка.
И наконец, несколько слов о своей скромной статистике работы с модулем. В свое время купил 8 шт. радиомодулей nRF24L01+. Приобрел в разное время с интервалом больше года, в разных интернет-магазинах и, судя по стилю маркировки, от разных производителей. Сначала, безрезультатно повозившись с ними и начитавшись, как мучаются с nRF24L01+ другие, без особых проблем перешел на радиомодули LoRa. Жизнь заставила вернуться к nRF24L01+, поскольку заявленный максимальный ток потребления nRF24L01+ ниже, чем у LoRa. Кроме того, nRF24L01+совместим с малопотребляющим nRF52832 и другими. Это особенно важно для автономных систем с ограниченным ресурсом источников. В итоге удалось соединить все 8 радиомодулей по эфиру. Вывод простой — не надо верить мифам, что рынок переполнен неработающими копиями (клонами, репликами, подделками). Да и какой изготовитель станет запускать высокотехнологичное производство, чтобы тиражировать неработающие изделия! Клонов на рынке хватает. К сожалению, они не всегда стоят дешевле оригиналов. Уровень основных технических характеристик клонов ниже, чем у оригинальных продуктов. Единственная возможность отличить копию от оригинала — это тестирование. Основные признаки копии — это выше заявленного в спецификации энергопотребление, больший процент потерь пакетов и более низкая скорость при передаче.
Конечно, эти простые шаги не могут гарантировать решение всех проблем с nRF24L01 — мне их и не перечесть, но после того, как их сделаете, будете уверены, что:
- радиомодули исправны;
- подключены верно;
- уровень сигнала передатчика, чувствительность приемника удовлетворительны и, в случае необходимости, обеспечиваются дополнительными мерами;
- пара nRF24L01+ работает в режиме «передатчик-приемник» без откликов и ожидания на отклики. Иногда этого достаточно.
Все! Надеюсь, как и у меня, у вас в дальнейшем поубавится проблем с nRF24L01+ в своих проектах. Успехов!