Системы распознавания лиц сегодня окружают каждого из нас: с их помощью находят преступников, бесконтактно оплачивают покупки в супермаркетах и проходят через турникеты в метро. И речь не только о глобальном видеонаблюдении, но и о хорошо знакомом Face ID в смартфоне. Однако, несмотря на схожесть задач, принципы работы и методология у этих решений разные. Давайте разбираться.

Face ID: как это работает?

Функция распознавания лица в смартфоне – это способ идентификации и подтверждения личности. Алгоритм Face ID сопоставляет лицо, находящееся перед ним, с сохраненным ранее шаблоном и отвечает на запрос является ли данный пользователь владельцем аппарата. 

Face ID применяется для разблокировки гаджета, входа в приложения и совершения покупок или денежных переводов. Система не предназначена для идентификации большого количества людей и, что важно, биометрические данные не отправляются в облако, а остаются на устройстве пользователя. Практически это означает следующее: когда FaceID применяется для подтверждения транзакции, например, в банковском мобильном приложении, банк не может быть абсолютно уверен, что операцию проводит непосредственно его Клиент, а не другой человек, имеющий доступ к телефону.

Как смартфон узнает, что Я это Я?! Детали технологии немного различаются в зависимости от моделей устройств, но в целом работу системы распознавания лиц в смартфонах можно условно разделить на четыре этапа:

  • сканирование лица при помощи сенсора или фронтальной камеры

  • получение уникальных данных – система ориентируется на набор особенностей сканируемого лица: контуры глазниц, форма скул и ширина носа

  • получение шаблона с ранее полученными данными о пользователе

  • поиск соответствий или сравнение – этап, на котором система “отвечает” разрешить доступ или нет.

Весь этот процесс, учитывая мощности современных процессоров, занимает всего доли секунды.

А как работает видеоаналитика с распознавание лиц? И в чем различия?!

Обнаружение и распознавание лиц в видеонаблюдении (facial recognition technology) — это технология, способная сопоставить лицо человека из видео или фото с базой данных лиц на сервере. Интеллектуальная видеоаналитика распознавания лиц работает следующим образом: 

Шаг 1 – камера фиксирует и определяет лицо человека отдельно или в толпе. Современные комплексы позволяют распознать человека, даже если он не смотрит в камеру, но находится в допустимых пределах поворота головы. 

  • Биометрический комплекс FaceNeuroVision, к примеру, гарантирует распознавание лица с поворотом до 35 градусов по горизонтали и вертикали. На практике – до 90. 

Шаг 2 – подробный анализ изображения лица с помощью ИИ и машинного обучения в режиме реального времени. Алгоритм системы оценивает узловые точки лица, расположение которых уникально для каждого человека.

Шаг 3 – преобразование цифрового изображения в биометрические данные и получение так называемого “отпечатка лица”.

Шаг 4 – передача данных на сервер и сравнение полученного отпечатка лица с имеющимися в базе данных образцами.

В отличие от Face ID, которая используется в большей мере для биометрической аутентификации, видеоаналитические системы применяются для решения задач в самых разных отраслях – от безопасности до образования: 

Безопасность. Правоохранительные органы и спецслужбы используют системы распознавания лиц для поиска преступников, доказательства правонарушений и их предотвращения. Биометрическую видеоаналитику применяют для обеспечения безопасности в аэропортах и метро, на спортивных мероприятиях, в торговых и образовательных центрах, а также на закрытых режимных объектах. 

Розничная торговля, общепит и банки. Система распознавания лиц помогает узнавать клиентов в лицо, понимать портрет аудитории, предотвращать мошенничество и оптимизировать сервис так, чтобы продавать больше, а также гарантировать безопасность проводимых транзакций. Использование сервисов биометрической верификации в мобильном банкинге позволяет проводить сравнение цифрового отпечатка лица с эталонным профилем Клиента непосредственно на сервере банка, а не на устройстве Клиента. Это является надежной защитой от подлога личности и проведения транзакции другим пользователем. 

  • Совсем недавно на рынке появились сверхкомпактные коробочные решения для биометричес��ого распознавания лиц, которые позволяют использовать видеоаналитику Facial recognition даже на объектах, где установка серверов или персональных компьютеров затруднительна или не представляется возможной (банкоматы, рестораны, кафе, мини магазины).  FNV Appliance – самый простой и экономически выгодный способ внедрить нейросетевую систему биометрического распознавания лиц FaceNeuroVision на объектах малого бизнеса и ритейла. Несмотря на достаточно компактный размер он позволяет контролировать доступ в охраняемые зоны, вести учет рабочего времени сотрудников, минимизировать риски недобросовестных действий, идентифицировать нарушителей и сокращать потери от воровства, а также идентифицировать VIP-клиентов и отслеживать поведение покупателей для маркетинговых целей. 

Здравоохранение и медицина. Распознавание лиц в клиниках, больницах и домах престарелых помогает идентифицировать пациентов для сокращения очередей, отслеживать прием лекарств и наблюдать за состоянием больных. Кроме того, нейросети уже научились быстро и точно устанавливать диагнозы и обнаруживать генетические заболевания по характерным признакам на лице. 

Образование. Сервисы распознавания лиц помогают и в учебных заведениях: они могут отслеживать посещаемость, а также наблюдать за учащимися во время важных тестов или экзаменов, чтобы те не списывали и не использовали подсказки. 

Резюме

Системы распознавания лиц позволяют решать широчайший спектр задач, поэтому интерес к ним стабильно высок, а спрос возрастает в геометрической прогрессии. 

Face ID и видеоаналитические биометрические системы предназначены для разных целей и соответственно, механизмы их работы, инструменты и процессы передачи данных различаются. Важным отличием также является алгоритм сравнения лица с эталонными данными – производится он на устройстве пользователя или на сервере Заказчика.