Comments 15
M-последовательности уже не актуальные?
Проверено. Голографическое кодирование лучше
М- последовательности обычно не рассматриваются в помехоустойчивом кодировании, поэтому не вошли в группу сравнения. Чаше используются в радиолокации, но там тоже голографическое формирование зондирующего импульса имеет преимущество
К важным характеристикам кодирования относится не только устойчивость к ошибкам, но и необходимая ширина канала, то есть объём передаваемой информации в единицу времени. Видимо по этому параметру голография выглядит очень плохо, раз вы такую информацию не решились указать явно?
Почему же, указано:
Для этого взяты рассмотренные выше предельные количества исправляемых ошибок для каждого кода и построена зависимость вероятности появления числа ошибок не больше предельного от отношения сигнал/шум. Во всех случаях число разрядов исходного слова – 8, длина кодового слова – 256 бит (скорость кодов R=1/32). Результаты приведены на рис. 4.
Да, голографическое кодирование требует большой избыточности (минимальная - трехкратная, большинство примеров приведено для 32, максимальная - не ограничена). Преимущество ее в том, что она использовании одинаковой избыточности с другими кодами (которые могут работать и с малой избыточностью, но эффективность ниже) ни один другой код не может обеспечить устранение 100% ошибок в цифровом канале или работу с отношением сигнал/шум минус 20 дБ в аналоговом. Если есть возможность использования более широкого диапазона частот, его конечно нужно использовать, но обычно нет. Поэтому избыточность приводит к уменьшению скорости передачи, но передача происходит. А без этой избыточности ее бы не было. Нужно разумно подходить к выбору области применения. Есть задачи, в которых надежность передачи информации важнее скорости.
Хабр же поддерживает формулы в LaTex. Перепишите их в статье, уважайте читателей.
Почему нет сравнения с современными кодами, например, с LDPC или турбокодами?
У вас сигнал получается с большими сериями нулей и единиц, а это очень плохо для демодулятора. С этим специально борятся с помощью скремблеров.
Почему нет сравнения с современными кодами, например, с LDPC или турбокодами?
Очень хотел сравнить и с ними тоже, но не нашел ни формул зависимости числа исправляемых ошибок от длины кодовой комбинации, ни статистики ошибок декодирования. А самому заниматься реализацией всех кодов и набором статистики по миллиону запусков - нет ни сил, ни времени. Тема открыта и общедоступна, приглашаю всех желающих присоединяться.
2. У вас сигнал получается с большими сериями нулей и единиц, а это очень плохо для демодулятора. С этим специально борятся с помощью скремблеров.
Для голографического демодулятора это хорошо - именно эта последовательность обеспечивает устойчивость к ошибкам всех видов.
За статью спасибо. Это очень интересно
Я правильно понимаю, что этот код только для очень низких скоростей? Уж очень специфичная форма у него получается. Скорость 1/2, 3/4 и тд этим методом можно закодировать? Для какой самой быстрой скорости можно сгнерерировать этот код?
Очень хотелось бы увидеть, а в статье, но этого не смог найти, чем отличаются эти два соседних закодированных слова. Вы закодировали число 100, закодируйте 99 и 101 и хотелось бы увидеть чем и на сколько они отличаются друг от друга
Я правильно понимаю, что этот код только для очень низких скоростей?
Проработано более десятка разных применений, и все в первую очередь высокоскоростные, когда есть возможность пойти на понижение скорости ради достоверности (надежности) передачи информации, от мобильной связи, до многомодовой передачи по оптоволокну и цифровой радиолокации (формирование зондирующего импульса). Для генерации кода времени не требуется - каждое кодовое слово рассчитано заранее и хранится в памяти (при длине информационного блока 8 бит - это всего 256 ячеек памяти). Декодирование требует быстрых вычислений, но меньшего объема, чем в широко применяемых кодах. Кроме того, декодирование можно делать оптическим путем мгновенно.
Очень хотелось бы увидеть, а в статье, но этого не смог найти, чем отличаются эти два соседних закодированных слова. Вы закодировали число 100, закодируйте 99 и 101 и хотелось бы увидеть чем и на сколько они отличаются друг от друга
В конце статьи я добавил ссылки на два применения, в одном (системы хранения) приведен пример для 99.
То есть у нас есть исходный блок из 8 бит, мы ему ставим в соответствие блок из 256 бит, и его передаём и потом восстанавливаем? А если исходный блок 16 бит, то передаваемый блок - 65536?
Помехоустойчивое кодирование голографическим кодом