
Учёные разработали численную модель, объясняющую, как в грозовых облаках формируется молния. Оказалось, что ключевую роль в этом процессе играет объединение множества плазменных каналов в единую сеть, что позволяет создать условия для появления «зародыша» молнии даже в относительно слабых внутриоблачных электрических полях. Полученные данные могут использоваться при разработке новых методов защиты от молний. Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Atmospheric Research.
Процесс «зарождения» молнии уже много лет возглавляет список десяти основных нерешённых проблем физики атмосферного электричества. Известно, что в грозовых облаках в результате столкновений заряженных частиц жидкой и твёрдой воды периодически возникают недолгоживущие холодные разряды — стримеры. Сами по себе они быстро распадаются, не превращаясь в молнию. Однако при некоторых условиях стримерные системы могут дать начало самоподдерживающемуся лидеру молнии. Лидер — это горячий плазменный канал, который формируется за счёт стримеров и образует многокилометровый проводящий каркас молнии. Однако до сих пор непонятно, каким образом в облаке происходит переход от стримеров к лидеру и, соответственно, как формируется молниевый канал.
Учёные из Института прикладной физики имени А.В. Гапонова-Грехова РАН (Нижний Новгород) смоделировали процесс образования «зародыша» молнии на двух наиболее типичных для этого высотах: на шести и девяти километрах. «Зародышем» молнии исследователи назвали плазменную структуру, нагревающуюся за счёт токов поляризации, протекающих по разрядным каналам в электрическом поле облака и превращающуюся в многокилометровый канал, который мы видим во ��ремя грозы.
Авторы разработали трёхмерную численную модель процесса инициации молнии, основными параметрами которой были высота над уровнем моря, напряжённость электрического поля облака и частота появления новых стримеров. В рамках моделирования физики воспроизвели процесс перехода от нестабильных стримерных систем к горячему самоподдерживающемуся лидеру молнии.

Авторам удалось выяснить детали этого превращения: оказалось, что молния зарождается в результате взаимодействия множества одновременно существующих разрядных (стримерных) каналов. Даже в слабых электрических полях, характерных для грозовых облаков, эти каналы могут сливаться в протяжённые проводящие кластеры. Когда такой кластер достигает критической длины (несколько десятков метров), он становится «зародышем» молнии — структурой, способной к самостоятельному дальнейшему развитию за счёт высокой степени поляризации.
При этом должны выполняться два условия. Во-первых, отдельные стримерные системы, случайным образом возникающие достаточно близко друг к другу, должны объединиться. Поскольку характерное время их жизни очень короткое — доли миллисекунды, — для их слияния необходимо, чтобы они появились не только рядом друг с другом, но и практически одновременно. Интересно, что на больших высотах, где воздух сильно разрежен, для образования молнии требуется гораздо более высокая концентрация плазменных каналов.

Во-вторых, стримерные каналы могут расти, а это становится возможным только при относительно большой напряжённости электрического поля, которая возникает в ограниченных (локальных) зонах как результат предшествующей разрядной активности.
Авторы подчёркивают, что промоделированный процесс возможен в условиях типичного грозового облака и, в отличие от других гипотез, не требует выполнения каких-либо экстраординарных условий, таких как нереалистично большие напряжённости внутриоблачного электричес��ого поля или наличие высокоэнергичных космических частиц, ионизирующих облачную среду. Это выгодно отличает предложенный механизм от альтернативных подходов.
«Молниевые разряды нередко приводят к травмам и гибели людей, пожарам, аварийным отключениям электричества, а иногда и к крупным техногенным катастрофам. Экономический ущерб молниевых разрядов продолжает расти из-за широкого распространения слаботочной микроэлектроники и в связи с тенденцией к цифровизации человеческой деятельности. Результаты нашей работы, улучшающие понимание процесса инициации молниевых разрядов, в перспективе могут быть полезны для усовершенствования существующих средств защиты от молний», — рассказывает участник проекта, поддержанного грантом РНФ, Артём Сысоев, научный сотрудник лаборатории нелинейной физики природных процессов ИПФ РАН.