Search
Write a publication
Pull to refresh

Заранее создаваемые объекты - целые числа в Питоне

И снова здравствуйте! Здесь мы проверяем "руками" разные штуки в Питоне.

Наверняка все что-то слышали о том, что часть объектов - целых чисел в Питоне заводится заранее, чтобы сэкономить на создании объектов. В Питоне каждая сущность, даже такая как целые числа - это полноценный объект со всеми положенными объекту прибамбасами. Создавать полноценные объекты - дорого. Поэтому в Питоне, да и в других языках, насколько я помню, кажется в Java, например, часть целых чисел, которые считаются часто используемыми, создаётся заранее и потом используется всё время жизни программы. Т.е. когда вы используете какое-то большое целое число, например, n = 10_000 , то под такое число создаётся новый объект каждый раз, а если используете маленькое, например, n = 10, то новый объект не создаётся, а делается ссылка на один и тот же, заранее созданный объект.

Но давайте сами проверим: действительно ли есть такие числа и каков их диапазон. Будем проделывать с числом простейшие манипуляции - сначала увеличивать на 1, потом уменьшать на 1, чтобы получилось тоже самое число. И потом проверим, поменялся ли id (адрес в памяти) у этого числа. Конечно, тут многое будет зависеть от конкретной версии интерпретатора. Какой-то интерпретатор и код k = n - 1 + 1 не будет оптимизировать, а какой-то и в приведённом ниже коде догадается, что все операции можно сделать как одну операцию, посокращает все добавления-вычитания и мы ничего не сможем определить. И тогда нас спасёт только какой-нибудь eval с вычислениями в виде строки. Но обычно интерпретаторы Питона не настолько хитрые и приведённый ниже код вполне работает в Google Colab.

def check_if_int_cached(n):
    k = n + 1
    k -= 1
    return id(k) == id(n)

checks = [(i, check_if_int_cached(i)) for i in range(-10000, 10000)]
for (x, a), (y, b) in zip(checks, checks[1:]):
    if a != b:
        print((x, y)[b])

В этом коде мы:

  • Проверяем, сохраняется ли idу числа после некоторых математических манипуляций, которые в итоге дают тоже самое число

  • Создаём последовательность из чисел диапазона [-10000, 9999] и результатов нашей проверки [(число, результат_проверки), ...]

  • Сцепляем попарно текущий и следующий элемент нашей последовательности, чтобы легче было проверять смену результата проверки, т.е. найти границу диапазона, где проверка даёт уже другой результат

  • Если результат поменялся - выводим либо текущий элемент, либо следующий, пользуясь тем трюком питона, что True - это 1. а False - это 0, и таким образом можно легко выбрать из двух чисел либо первое либо второе не через тернарный оператор, а через индексацию [num1, num2][условие]

Запустим наш код. Вывод:

-5

256

Итак, мы определили, что, действительно, целые числа в диапазоне [-5, 256] заранее создаются Питоном и какие бы ни были вычисления в программе, если в их результате получается число из этого диапазона, то под него не создаётся новый объект, а переиспользуется старый.

Давайте ещё проверим - а действительно ли эта оптимизация Питона даёт какой-то выигрыш. Попробуем создавать список из чисел диапазонов [0, 200] и [1000, 1200] и проделаем это миллион раз для солидности стабильности результата.

import time

n = 1_000_000
k = (0, 1000)
m = 200
for i in k:
    t1 = time.perf_counter()
    for _ in range(n):
      lst = list(range(i, i+m))
    t2 = time.perf_counter()
    print(t2-t1)

1.732138877000125

3.547805026000333

Выигрыш по времени получился практически ровно в 2 раза! Но это если ничего не делать, а только создавать список из объектов-чисел. Если там будут ещё какие-то действия и вычисления, возможно, выигрыш будет вообще не заметен.

В предыдущем посте я писал о встроенной оптимизации добавления символов в строку в Питоне. Далее будут и другие посты об интересных мелочах в Питоне, которые быстро и просто могут быть проверены своими руками (за что мне и нравится Питон) . Спасибо за чтение.

Tags:
Total votes 5: ↑5 and ↓0+5
Comments3

Articles