Эта статья написана в соавторстве Даниэлем и Джианнисом Полизосом, который ещё в 2017 году был одним из первых студентов Rock the JVM. Сейчас Джианнис – старший разработчик и контрибьютор Apache Pulsar, многообещающего нового инструментария для передачи распределённых сообщений и потоковых данных. В этой статье сочетаются два наших любимых технических инструмента: Apache Pulsar и Apache Spark.
Потоковая обработка – важный и необходимый аспект современных инфраструктур данных. Сегодня компании стремятся поставить себе на службу потоковую передачу и аналитику данных в реальном времени, чтобы быстрее предоставлять пользователям результаты, повышать удобство работы с ресурсом и, соответственно, поднимать его бизнес-ценность.
Примеров такого рода сколько угодно: представьте себе онлайн-сервис, предоставляющий пользователю рекомендации на основе того, какие действия пользователь совершает на веб-странице. Ещё можно представить IoT-компанию, желающую отслеживать показания сенсоров и своевременно реагировать на потенциальные сбои. К этой же категории относятся системы компьютерного зрения, которые должны в режиме реального времени анализировать видеозаписи или обнаруживать случаи мошенничества в банковских системах; этот список можно продолжать и продолжать.
Как правило, в конвейерах для потоковой обработки данных требуется уровень хранения потоков, например, Apache Pulsar или Apache Kafka. Далее для выполнения более тонких задач по обработке потоков нам потребуется движок потоковых вычислений, например, Apache Flink или Spark Structured Streaming.
Когда требуется обеспечить унифицированную пакетную обработку и работу с потоками в системах, развёрнутых в облаке, Apache Pulsar отлично подходит для полной технической поддержки таких вычислительных движков. Apache Pulsar предназначен для работы с облачной (cloud-native) инфраструктурой, а также сделан в расчёте на стратегии унифицированной пакетной обработки данных и работу с потоками.