All streams
Search
Write a publication
Pull to refresh
18
0
Илья Бакалец @Ilya12c

Тим лид команды по машинному обучению в Магнус Тех

Send message

ClearML Session — магия вне Хогвартса

Level of difficultyEasy
Reading time7 min
Views2.2K

В предыдущей статье мы познакомились с основными составляющими ClearML и детально рассмотрели модуль работы с данными. Теперь речь пойдёт о работе на удалённом сервере и настройках рабочего места с использованием ClearML Session. Заодно немного поговорим о модуле ClearML Agent. Поскольку эта тема вполне заслуживает отдельной статьи, в этот раз затронем агента лишь по касательной.

Читать далее

ClearML Data Management

Reading time15 min
Views5.1K


Очевидный для ML-инженера факт: если на вход модели подать мусор — на выходе тоже будет мусор. Это правило действует всегда, независимо от того, насколько у нас крутая модель. Поэтому важно понимать, как ваши данные будут храниться, использоваться, версионироваться и воспроизведутся ли при этом результаты экспериментов. Для всех перечисленных задач есть множество различных инструментов: DVC, MLflow, W&B, ClearML и другие. Git использовать недостаточно, потому что он не был спроектирован под требования ML. Но есть инструмент, который подходит для версионирования данных и не только — это ClearML. О нем я сегодня и расскажу.

Читать дальше →

Роман Тезиков про СV-проекты и промт-инжиниринг как базовый навык каждого человека

Reading time7 min
Views2.8K

К нам на огонек в подкаст заглянул Роман Тезиков — senior-разработчик и DL-engineer. Эксперт рассказал много интересного о своем опыте реализации ML-проектов. А «на десерт» Роман поделился тем, как он применяет промт-инжиниринг в работе и личной жизни и каких впечатляющих результатов ему удалось добиться с помощью подобных технологий.

Читать далее

Из фото в 3D, ч.2: калибровка камеры

Level of difficultyHard
Reading time13 min
Views14K

Фото до (слева) и после (справа) калибровки камеры

В первой части статьи мы немного поупражнялись на яблоках, чтобы понять, как 3D-объекты проецируются на 2D-плоскость фотографии. Заодно мы описали математическую модель камеры и ее параметры.

Знаешь параметры — живешь в Сочи можешь восстановить 3D-сцену или ее характеристики: высоту здания, расстояние до пешехода, загруженность самосвала. Словом, сплошная польза для целого ряда отраслей. 

А вот как именно определить эти заветные параметры, так и осталось за кадром. К тому же мы рассматривали простейшую модель pinhole, но в реальной жизни все сложнее. У большинства камер есть линзы, которые искажают изображения (вспомните эффект fisheye). Все эти «рыбьи глаза»‎ и другие отклонения нужно как-то корректировать.

О том, как восстанавливать параметры камеры (калибровать ее) и нивелировать искажения (дисторсию), читайте в этой публикации.

Также из нее вы узнаете:

как выглядит математическая модель калибровки и дисторсии;

как собрать датасет для калибровки;

какие есть методы калибровки;

детали одного из этих методов.

Читать далее

Из фото в 3D, ч.1: геометрия формирования изображения

Level of difficultyHard
Reading time6 min
Views11K

Казалось бы, жизнь невозможно повернуть назад, а предмет из фотографии не восстановишь. Хотя с последним можно поспорить: из плоского 2D-изображения реально восстановить 3D-модель объекта. Подобная «магия» часто практикуется в AR/VR, управлении беспилотниками и других сферах. Для этого первым делом производится калибровка камеры. Чтобы понять процесс калибровки, сперва следует освоить базовые принципы преобразования трехмерных координат точек в двухмерные на плоскости. 

Сегодня мы рассмотрим:

геометрию формирования изображения на сенсоре камеры (pinhole модель);

как рассчитываются координаты точки на сенсоре для точки из реального мира;

как переходить от одной системы координат к другой;

что такое внутренние и внешние параметры камеры и зачем они нужны.

Читать далее

Антон Мальцев про удобные NPU, Computer Vision для коботов и восстание неуклюжих машин

Level of difficultyEasy
Reading time8 min
Views3.8K

У нас в гостях специалист с 15-летним опытом в Machine Learning который совмещает пару высокоуровневых должностей в разных компаниях — Head of ML в Cherry Labs и CTO в Rembrain. За полтора часа мы обсудили: позабытые ML-фреймворки и перспективы Reinforcement Learning, выяснили, какие платы с NPU лучше подходят для pet-project и зачем норвежцам роборуки.

Читать далее

Влад Грозин о PhD в США, философии в Data Science, пузыре рекомендаций и голодающих геймерах

Level of difficultyEasy
Reading time7 min
Views4.7K

К нам в гости заглянул Влад Грозин — создатель ODS Pet Projects, ex. Head of Data Science из компании INCYMO, чтобы поговорить за жизнь про получение PhD в Америке и экзистенциальные риски, связанные с разработкой рекомендательных систем: пузыри рекомендаций и появление алгоритмов, которые будут предсказывать желания пользователя.

Читать далее

Kaggle для футболистов. Разбираем подходы призеров соревнований по детекции столкновений (1 и 2 место)

Level of difficultyMedium
Reading time8 min
Views2.2K


Продолжаем разбирать подходы призеров Kaggle-соревнований от американской национальной футбольной лиги (NFL). Участники этого челленджа детектировали столкновения игроков в американском футболе, анализируя данные с видеокамер и датчиков, прикрепленных к форме футболистов. В продолжении первой части статьи расскажу про самые успешные подходы к этой задаче.

Читать дальше →

Архитектура рекомендаций: как дать пользователю соцсети то, что ему понравится

Level of difficultyMedium
Reading time12 min
Views5.4K

Сегодня я расскажу, про базовое решение задачи рекомендации текстового контента на конкретном примере — ленте одной российской социальной сети. Посмотрим, что под капотом у сервиса рекомендаций, какие данные нужны для построения векторов пользователей, как ранжируются посты и к какой архитектуре рекомендательной системы мы пришли спустя несколько месяцев экспериментов.

Читать далее

Kaggle для футболистов. Разбираем подходы призеров соревнований по детекции столкновений (5 — 3 место)

Level of difficultyMedium
Reading time11 min
Views2.8K

Недавно закончилось соревнование от американской национальной футбольной лиги (NFL), которая объединилась с AWS, чтобы прокачать системы спортивной видеоаналитики.

Организаторы поставили простую, казалось бы, задачу — точно определить, в каких случаях игроки сталкиваются друг с другом во время матча по американскому футболу. Мы с коллегами приняли участие, но не успели реализовать все свои идеи. Зато изучили подходы других команд и поняли, что были на верном пути. В этой статье я рассмотрю некоторые из решений, которые принесли денежное вознаграждение и золотые медали участникам этого челленджа. 

Читать далее

Как подготовить PreLabeled-датасет при помощи CVAT, YOLO и FiftyOne

Level of difficultyEasy
Reading time7 min
Views6.7K

Представьте ситуацию: подходит к концу спринт, во время которого вы с командой планировали разметить десятки тысяч картинок для обучения новой нейросети (допустим, детектора). Откладывать задачи — не про вас! И вы обязались придумать способ как успеть в срок!

Сегодня я подробно расскажу:

как развернуть CVAT — популярный сервис для разметки данных;

как быстро и удобно предразметить датасет с помощью YOLO и FiftyOne;

как загрузить полученный датасет на CVAT для переразметки;

как выгрузить предразмеченный датасет обратно.

Читать далее

Information

Rating
Does not participate
Works in
Registered
Activity

Specialization

ML Engineer
Lead
Machine learning
Neural networks
Deep Learning
Pytorch
Computer Science
Natural language processing
Reinforcement learning