Search
Write a publication
Pull to refresh
31
0
Александр Лозовский @MajinSaha

Разработчик в области численных методов и HPC

Send message

Обзор методов численной оптимизации. Безусловная оптимизация: метод линий

Reading time24 min
Views47K
image

Я работаю в американской компании, разрабатывающей софт для химической и нефтегазовой промышленности. Одной из наиболее востребованных тем в этой области является оптимизация чего-либо при заданных параметрах производства. Например, минимизация расходов на выработку какого-нибудь газа, максимизация прибыли при реализации топлива, максимизация давления в какой-нибудь трубе при вариабельных термодинамических параметрах на другой части проектируемого завода и заданных ограничениях и т.д. Я занимался реализацией методов оптимизации для подобных задач и, думаю, накопил ощутимый опыт в этой области. С этого поста хотел бы начать серию обзоров известных методов оптимизации.

Введение


Оптимизация — это процесс нахождения точки экстремального значения некоторой заданной целевой функции $f(\mathbf{x})$. Это один из крупнейших краеугольных камней прикладной математики, физики, инженерии, экономики, промышленности. Область её применений необъятна и может распространяться от минимизации физических величин на микро- и макроуровнях до максимизации прибыли или эффективности логистических цепочек. Машинное обучение также заострено на оптимизации: всевозможные регрессии и нейроные сети пытаются минимизировать ошибку между предсказанием и реальными данными.

Экстремум может быть как минимумом, так и максимумом, но обычно принято изучать любую оптимизацию исключительно как поиск минимума, поскольку любая максимизация эквивалентна минимизации из-за возможности поменять знак перед целевой функцией: $f(\mathbf{x})\to -f(\mathbf{x})$. Следовательно, в любом месте ниже под оптимизацией мы будем понимать именно минимизацию.
Читать дальше →

Использование графов для решения разреженных систем линейных уравнений

Reading time15 min
Views12K

Прелюдия


Численное решение линейных систем уравнений является незаменимым шагом во многих сферах прикладной математики, инженерии и IT-индустрии, будь то работа с графикой, расчёт аэродинамики какого-нибудь самолёта или оптимизация логистики. Модная нынче «машинка» без этого тоже не особо бы продвинулась. Причём решение линейных систем, как правило, сжирает наибольший процент из всех вычислительных затрат. Понятно, что эта критическая составляющая требует максимальной оптимизации по скорости.

Часто работают с т.н. разреженными матрицами — теми, у которых нулей на порядки больше остальных значений. Такое, например, неизбежно, если имеешь дело с уравнениями в частных производных или с какими-нибудь другими процессами, в которых возникающие элементы в определяющих линейных соотношениях связаны лишь с «соседями». Вот возможный пример разреженной матрицы для известного в классической физике одномерного уравнения Пуассона $-\phi^{''} = f$ на равномерной сетке (да, пока в ней нулей не так много, но при измельчении сетки их будет будь здоров!):

$\begin{pmatrix}2 & -1 & 0 & 0 & 0\\ -1 & 2 & -1 & 0 & 0\\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 2\end{pmatrix}$


Противоположные им матрицы — те, в которых на количество нулей не обращают внимания и учитывают все компоненты без исключения, — называют плотными.
Читать дальше →

Information

Rating
Does not participate
Registered
Activity