All streams
Search
Write a publication
Pull to refresh
108
0

Профессиональное сообщество

Send message

Использование статистических методов для анализа временных рядов

Reading time3 min
Views13K

Очень часто в нашей работе встречается такое понятие как «временной ряд». Это определение было придумано очень давно. Тогда, когда люди только стали записывать данные о чем-то двумя значениями: явлением и временем. Наиболее классическим описанием временного ряда является запись температуры на протяжении года или нескольких лет.

Но сам ряд — это лишь набор информации, который не несет ничего нужного. При этом, если построить график этого ряда, используя, к примеру, для оси Y значения времени, а для оси X — показания, которые были нами изначально записаны или форматизированы в цифровом виде, то мы сможем найти некоторые последовательности.

В случае графика температур — день теплее, чем ночь, а зима холоднее лета. И чем больше данных мы сможем проанализировать подобным образом, выделяя какие-то закономерности, тем с большей точностью мы сможем предугадать — что нас ждет в будущем.

Таким же образом думали люди в прошлом, разделяя процесс работы с временными графиками на три этапа: сбор данных, анализ временного ряда, предсказание следующих значений.

Но для чего может использоваться временной ряд в аудите? Для всего!

Операции клиента на протяжении квартала – временной ряд. Расход топлива служебного автомобиля – временной ряд. Даже чтение этой статьи – тоже временной ряд! (мы можем записать — сколько слов в минуту вы читаете, с указанием порядкового времени минуты)

Поэтому, анализ временных рядов мы с вами проводим достаточно часто. И, к сожалению, очень часто можем ошибаться.

Основным методом работы с любым простым временным рядом – это построение графика и его визуальная оценка.

Возьмем простой пример: рассмотрим покупки подарков к праздничному мероприятию для десяти коллег.

Читать далее

Оценка важности «фичей» для нелинейных моделей

Reading time4 min
Views6.2K

Задачи, которые сегодня решает машинное обучение, зачастую являются комплексными и включают в себя большое количество признаков (фичей). Из-за сложности и многообразия исходных данных применение простых моделей машинного обучения часто не позволяет достигнуть необходимых результатов, поэтому в реальных бизнес-кейсах применяют сложные, нелинейные модели. У таких моделей есть существенный недостаток: из-за их сложности практически невозможно увидеть логику, по которой модель присвоила именно этот класс операции по счету. Особенно большое значение интерпретируемость модели играет, когда результаты ее работы необходимо представить заказчику — он скорее всего захочет узнать, на основе каких критериев принимаются решения для его бизнеса.

В стандартных пакетах для машинного обучения, таких как sklearn, xgboost, lightGBM существуют методы для оценки важности влияния на конечный результат той или иной фичи (параметра). Однако эти метрики важности не дают представление о том, как именно эти признаки влияют на предсказания модели. Например, как время проведенной операции указывает на то, была ли сделка мошеннической? Или как сильно адрес прописки владельца карты смещает предсказание модели? Для ответа на эти вопросы необходимо найти комплексное решение, которое помогло бы повысить интерпретируемость нелинейных моделей. Таким инструментом является библиотека SHAP. В библиотеке SHAP для оценки вклада фичей в итоговое предсказание моделей рассчитываются значения Шэпли. Для оценки важности фичи происходит оценка предсказаний модели, которая была обучена на основе датасета с и без данной фичи.

Рассмотрим работу данной библиотеки на примере определения мошеннических операций. Рассмотрим поля, которые есть в нашей таблице. В таблице содержится 213 столбцов, что довольно много для ручного перебора с помощью метода обучения модели без каждого признака поочередно для выявления важности каждой из фич.

Приведенный ниже код взят с kaggle и доработан для демонстрации функций рассматриваемого инструмента.

Читать далее

LIVENESS DETECTION — проверка идентификатора на принадлежность «живому» пользователю

Reading time4 min
Views2.3K

Технологией распознавания лиц уже никого не удивить. Крупные компании активно внедряют эту технологию в свои сервисы и конечно, мошенники пытаются использовать разные способы, в том числе подмену идентификатора лица с помощью маски, фото или записи для осуществления своих преступных действий. Такая атака называется спуфингом.
Хотим познакомить вас с технологией liveness detection, в задачу которой входит проверка идентификатора на принадлежность «живому» пользователю.

Датасет можно скачать по ссылке.

Для обучения в датасете  есть 4 подкласса.

Читать далее

Распознавание речи с помощью инструментов машинного обучения

Reading time5 min
Views6.3K

В своей работе я столкнулся с необходимостью проверить записи звонков на соблюдение сотрудниками скрипта разговора с клиентами. Обычно для этого выделяется сотрудник, который тратит большое количество времени на прослушивание записей разговоров. Мы поставили себе задачу — уменьшить временные затраты на проверку с помощью инструментов автоматического распознавания речи (ASR). Один из таких инструментов мы рассмотрим подробнее.

Nvidia NeMo — набор инструментов машинного обучения для создания и обучения моделей на базе графического процессора.

Модели в составе NeMo используют современный подход к распознаванию речи — коннекционистская временная классификация (CTC).

До СТС использовался подход, при котором входной аудиофайл разбивался на отдельные речевые сегменты и по ним предсказывались токены. Далее токены объединялись, повторяющиеся сворачивались в один, и результат подавался на вывод модели.

При этом страдала точность распознавания, так как слово с повторяющимися буквами не считалось корректно распознанным на 100%. Например, «кООперация» приводилось к «кОперация».

С CTC — все еще предсказываю один токен на временной сегмент речи и дополнительно используем пустой токен, чтобы выяснить где свернуть повторяющиеся токены. Появление пустого токена помогает отделить повторяющиеся буквы, которые не должны быть свернуты.

Для своей задачи я взял одну из моделей (Jasper 10×5) и обучил ее с нуля. Для обучения был выбран публичный датасет телефонных разговоров, содержащий нарезанные аудиозаписи и их транскрибацию.

Чтобы обучить модель, необходимо подготовить файл-манифест, содержащий информацию об аудиофайле и транскрибацию этого файла. Файл манифест имеет свой формат:

Читать далее

Решаем natural language processing-задачу – классификация текстов по темам

Reading time6 min
Views23K

В предыдущей статье я рассказал, как подготовить датасет, содержащий тексты блога habr.com с информацией об их принадлежности к определенной категории. Теперь на базе этого датасета я расскажу о подходах, позволяющих создать классификатор, автоматически относящий текст к той или иной категории.

Сегодня нам предстоит описать решение задачи по созданию классификатора текстовых документов. Шаг за шагом мы будем пытаться улучшить нашу модель. Давайте посмотрим, что же из этого получится.

Для решения нашей задачи снова используем язык программирования python и среду разработки Jupyter notebook на платформе Google Colab.

В работе понадобятся следующие библиотеки:

Читать далее

Собираем данные для тренировки в решении NLP-задач

Reading time4 min
Views5.6K

Выбор источника и инструментов реализации

В качестве источника информации я решил использовать habr.com – коллективный блог с элементами новостного сайта (публикуются новости, аналитические статьи, статьи по информационным технологиям, бизнесу, интернету и др.). На этом ресурсе все материалы делятся на категории (хабы), из которых только основных – 416 штук. Каждый материал может принадлежать к одной или нескольким категориям.

Код для сбора информации (парсинга) написан на языке python. Среда разработки – Jupyter notebook на платформе Google Colab. Основные библиотеки:

Читать далее

Соревнование KAGGLE по определению риска дефолта заемщика. Разработка признаков

Reading time12 min
Views5K

Введение: Соревнование от финансовой группы HOME CREDIT по определению риска дефолта заемщика

Соревнования Kaggle с использованием структурированных данных очень часто выигрывают специалисты по разработке признаков: побеждают те, кто может создавать наиболее полезные признаки из данных. Это представляет собой одну из закономерностей в машинном обучении: разработка признаков дает больший возврат инвестиций, чем построение модели и настройка гиперпараметров. Как говорит один из ведущих ученых в области машинного обучения – Эндрю Ын: «Прикладное машинное обучение — это в основном разработка признаков».

Хотя выбор правильной модели и ее оптимальная настройка, несомненно, очень важны, модель может учиться только на основе предоставленных данных. Обеспечение максимального соответствия этих данных задаче – задача специалиста по данным. Конструирование признаков может включать, как создание признаков: добавление новых признаков из существующих данных, так и выбор признаков: выбор только наиболее важных признаков или другие методы уменьшения размерности. Есть много методов, которые мы можем использовать как для создания, так и для выбора признаков.

Читать далее

Введение: Соревнование от финансовой группы HOME CREDIT по определению риска дефолта заемщика

Reading time19 min
Views3.6K

В статье рассматривается соревнование по машинному обучению «Home Credit Default Risk», цель которого – использовать исторические данные о заявках на получение кредита, чтобы предсказать, сможет ли заявитель погасить ссуду (определить риск дефолта заемщика). Прогнозирование того, вернет ли клиент ссуду или столкнется с трудностями, является критически важной бизнес-задачей, и Home Credit проводит конкурс на платформе Kaggle, чтобы увидеть, какие модели машинного обучения, способные помочь им в решении этой задачи, может разработать сообщество.

Читать далее

Обеспечить январь настроением

Reading time6 min
Views1.2K

Вместо эпилога

Эта история произошла довольно давно, но некоторые подробности стали ясны только сейчас, отчего и настало время её рассказать.

Не будем останавливаться на описании типов параллельных реальностей, это уже давно и успешно делают многие литераторы, любители альтернативной истории, футурологи и просто поклонники подобных вещей. Перейдём сразу к делу.

А дело происходило в НИИЧАВО в тот момент, когда у Кристобаль Хозеевича Хунты не получилось навести порядок с Тройкой. Соответственно товарищ А.Привалов, выражаясь современным языком «завис» под началом товарища Выбегалло. Ноябрь выдался малоснежный, но близился новый год и т. Выбегалло пришёл к т. Привалову с поручением от Тройки: «Ввиду наступающего праздника Нового года необходимо разработать план обеспечения настроением всех жителей страны:

1) в недельный срок произвести оценку потребности нужных событий на 1000 жителей;

2) передать описание потребности из п.1 в лабораторию Хорошего настроения для реализации плана, уже доведённого до них Тройкой.

Передав поручение Тройки с резолюцией «Обеспечить январь настроением» Выбегалло, строго посмотрел на т. Привалова и сказал, что зайдёт через два дня.

Работа началась

Александр с максимально серьёзным видом кивнул. Сказал: «Немедленно займусь» и проводил уходящего т. Выбегалло взглядом. Особого беспокойства Александр не испытывал, т.к. недавно у заезжего путешественника во времени выменял на неразменный рубль notebook c Anaconda. Так что сейчас он точно знал, что Рython не только змея такая, но и полезная в хозяйстве вещь.

Немного поразмышляв о подходах, он создал данные с 1000 событий для января месяца. Малым, но приятным бонусом, было то, что 1 января выпадало на понедельник и функции обработки дат даже не понадобились. В данных он заложил два типа событий: «искренняя улыбка» и «беззаботный смех».

При подготовке к встрече Александр считал данные:

Читать далее

Ящики, усы и скрипки

Reading time4 min
Views8.6K


Очень часто данные необходимо сравнивать. Например, у нас есть несколько рядов данных из какой-то области деятельности человека (промышленности, медицины, государственного управления, …), и мы хотим сравнить, насколько они похожи или, наоборот, чем одни показатели выделяются по сравнению с другими. Для простоты восприятия возьмем данные более простые, универсальные и нейтральные — высоту в холке и вес нескольких пород собак по сведениям Американского клуба собаководства (American Kennel Club). Данные по размерам пород в среднем можно найти здесь. Прибавим к ним функцию random.uniform из Python-библиотеки numpy, переведем дюймы в сантиметры, а фунты в килограммы, и вот мы получаем реалистично выглядящий набор данных по размерам собак нескольких пород, с которым можно работать. В нашем примере это чихуахуа, бигли, ротвейлеры и английские сеттеры.
Читать дальше →

PAGERANK: алгоритм ранжирования WEB-страниц

Reading time5 min
Views13K


Итак, рассмотрим ориентированный взвешенный граф. Пусть у графа n вершин. Каждой паре вершин соответствует некоторый вес (вероятность перехода).



Стоит отметить, что типичные web-графы – это однородная дискретная марковская цепь, для которой выполняется условие неразложимости и условие апериодичности.

Запишем уравнение Колмогорова-Чэпмена:



где P – переходная матрица.

Читать дальше →

Можно всё: решение NLP задач при помощи spacy

Reading time9 min
Views41K


Обработка естественного языка сейчас используется повсеместно: стремительно развиваются голосовые интерфейсы и чат-боты, разрабатываются модели для обработки больших текстовых данных, продолжает развиваться машинный перевод.

В этой статье мы рассмотрим относительно новую библиотеку SpaCy, которая на данный момент является одним из самых популярных и удобных решений при обработке текста в Python. Её функционал позволяет решать очень широкий спектр задач: от определения частей речи и выделения именованных сущностей до создания собственных моделей для анализа.

Читать дальше →

Аудит чат-ботов

Reading time6 min
Views2.8K


В настоящее время чат-боты широко распространены в различных сферах бизнеса. Так, например, банки с их помощью могут оптимизировать работу своего контактного центра, мгновенно отвечая на популярные вопросы клиентов и предоставляя им справочную информацию. Для клиентов чат-боты также являются удобным инструментом: гораздо проще написать вопрос в чате, чем ожидать ответа, звоня в контактный центр.
Читать дальше →

Определяем пол и возраст по фото

Reading time2 min
Views7.8K


В практике внутреннего аудита встречаются задачи, при которых необходимо осуществить проверку по выявлению некорректного ввода данных о клиенте. Одной из таких проблем может быть несоответствие введенных данных и фото клиента, в момент оформления продукта.

К примеру, имеется следующая информация: пол, возраст и ссылка на фото. Для проверки соответствия воспользуемся библиотекой py-agender языка Python.

Работа библиотеки осуществляется в два этапа. На первом, opencv определяет расположение лица на фото. На втором, нейронная сеть архитектуры EfficientNetB3, которая обучена на наборе данных UTKFace DataSet, определяет пол и возраст обладателя лица на фото.

Читать дальше →

Использование текстовых и извлеченных числовых признаков в задаче классификации комментариев

Reading time7 min
Views2.3K


Как выглядят данные?


Во-первых, посмотрим на имеющиеся тестовые и тренировочные данные (данные соревнования «Toxic comment classification challenge» на платформе kaggle.com). В тренировочных данных, в отличии от тестовых, имеются метки для классификации:


Рисунок 1 — Train data head

Из таблицы видно, что мы имеем в тренировочных данных 6 столбцов-меток («toxic», «severe_toxic», «obscene», «threat», «insult», «identity_hate»), где значение «1» свидетельствует о принадлежности комментария к классу, также присутствует столбец «comment_text», содержащий комментарий и столбец «id» – идентификатор комментария.

Читать дальше →

XPATH + XML = быстрая обработка

Reading time5 min
Views21K


При выполнении запросов язык XPath оперирует такими сущностями как узлы. Узлы бывают нескольких видов: element (узел-элемент), attribute (узел-атрибут), text (узел-текст), namespace (узел-пространство имён), processing-instruction (узел-исполняемая инструкция), comment (узел-комментарий), document (узел-документ).

Рассмотрим, как в XPATH задаётся последовательность узлов, направления выборки и выбирать узлы с конкретными значениями.
Читать дальше →

Ловля цен. Практическое руководство в море закупок

Reading time3 min
Views2.1K


Начнем с самого простого способа – попробуем ловить рыбу руками. Открываем базу товаров с закупок и начинаем искать похожий товар. Высока вероятность, что к вечеру мы так ничего и не поймаем.

Попробуем как-то отфильтровать базу товаров с закупок. Каждому товару в закупках присваивается код ОКПД2. Общероссийский классификатор продукции по видам экономической деятельности это код, который содержит информацию о товаре.

Например:



Теперь у нас есть удочка, стало немного лучше, но почему-то рыба не желает вешаться на крючок.

Читать дальше →

Парсинг и аудит

Reading time4 min
Views2.8K


Начнем с идеи. Допустим, вы, как настоящий аудитор, хотите провести экспертизу отчетности заводчика собак, используя в том числе и сторонние ресурсы. Для этого вы пробуете получить систематизированную информацию о щенках заводчика, зная, к примеру, лишь название их пород, и составить из нее таблицу в Pandas, пригодную к дальнейшей обработке любого характера (всевозможные статистические изыскания, агрегация и так далее). Но ваши данные хранятся в глубине некоторого абстрактного вебсайта, откуда вы можете вынуть их в только виде архива, где сложены документы нескольких форматов, внутри которых есть текст, картинки, таблицы. А если пород щенков много, а на каждую из них есть по десятку pdf-файлов с таблицами, откуда вам нужна не вся информация, а также, например, нужны названия этих таблиц или сноски? Добавим в наш проект несколько функций, решающих следующие задачи: выгрузка и распаковка архива с данными, поиск и обработка pdf файлов из архива, анализ полученных данных.

Читать дальше →

Простейший голосовой помощник на Python

Reading time4 min
Views14K


Для создания голосового помощника не нужно обладать большими знаниями в программировании, главное понимать каким функционалом он должен владеть. Многие компании создают их на первой линии связи с клиентом для удобства, оптимизации рабочих процессов и наилучшей классификации звонков. В данной статье представлена программа, которая может стать основой для Вашего собственного чат-бота, а если точнее – голосового помощника для распознавания голоса и последующего выполнения команд. С ее помощью мы сможем понять принцип работы наиболее часто встречаемых голосовых помощников.
Читать дальше →

Process Mining без PM4PY

Reading time5 min
Views3.6K


Построить граф по логам процесса очень просто. В распоряжении аналитиков в настоящее время достаточное многообразие профессиональных разработок, таких как Celonis, Disco, PM4PY, ProM и т.д., призванных облегчить исследование процессов. Намного сложнее найти отклонения на графах, сделать верные выводы по ним.

Что делать, если некоторые профессиональные разработки, зарекомендовавшие себя и представляющие особый интерес не доступны по тем или иным причинам, или вам хочется больше свободы в расчетах при работе с графами? Насколько сложно самим написать майнер и реализовать некоторые необходимые возможности для работы с графами? Сделаем это на практике с помощью стандартных библиотек Python, реализуем расчеты и дадим с их помощью ответы на детальные вопросы, которые могли бы заинтересовать владельцев процесса.
Читать дальше →

Information

Rating
Does not participate
Location
Москва, Москва и Московская обл., Россия
Works in
Registered
Activity