All streams
Search
Write a publication
Pull to refresh
178
0.9

Человек

Send message
На моём ноутбуке FFTW на преобразование 65536 семплов тратит чуть более одной миллисекунды. Может, стоило оптимизировать сам алгоритм преобразования?
причём тут счастье?
Счастье — в математике, на которую законы подлости не действуют)
исследуемая система не стохастична и не хаотична, и на случайные входные данные она реагирует предсказуемо
Жаль, а так хотелось посмотреть, как выглядит бутербродный аттрактор)
Это была отсылка непосредственно к самой статье, в которой говорится о субъективности восприятия нормальности.
какую бы функцию размазывания Вы не выбрали, при повторном многократном применении по ортогональным осям быстро сходится к изотропному гауссиану.
Утверждение спорным больше не считаю, забираю свои слова обратно.
В математике свойства системы от линейного масштаба не зависят, поэтому при вычислениях от размеров можно отказаться вообще. А в физике — зависят, и автомобиль размером с молекулу ехать не сможет.
Вы не учитываете изменение масштаба.
От изменения масштаба нули спектра никуда не денутся, а лишь так же изменят свой масштаб.

Свертка последовательности длиной N дает последовательность длиной 2*N-1.
Свертка последовательности длиной N — означает, что все остальные значения функции равны нулю. В непрерывном виде описывается через прямоугольную функцию, которая, в свою очередь, описывается через разницу двух функций Хэвисайда. Это условие не обязательно — свёртку можно делать и над бесконечной последовательностью чисел (если говорить о дискретной функции).

Вот картинка свертки BOX функции с самой собой
Да, я видел такие картинки, и тоже умею их рисовать.
Свёртки:

Спектры:

100 итераций:

Во всё увеличивающимся масштабе она будет сходится к гауссиане, но никогда не сойдётся — т.к. равенство между предельной функцией и гауссианой нельзя будет поставить даже с учётом масштаба. В моей последней статье рассматривался похожий сценарий.

Если бы центральная предельная теорема была бы применима к функциям, то её незачем было бы привязывать к теории вероятности.
Это очевидно в математике, но не очевидно в физике. По крайней мере, лично для меня.
Непрерывное
Хорошо, подойду с другой стороны. Насколько мне известно, эксперимента, доказывающего непрерывность пространства, пока ещё нет. Поэтому более точно сказать так: «Непрерывность пространства более точно согласуется с текущей физической теорией». Это я знаю.

Но я также и знаю, что физики-теоретики трудятся над новыми теориями потому, потому что в текущих теориях есть пробелы. Как минимум, квантовая механика и теория относительности — пока ещё разные теории. И если существуют физики-теоретики, считающие, что принятие дискретности пространства может решить какие-то проблемы — значит, на то у них есть основания.

Поэтому, если завтра вдруг на хабре появится статья "британские учёные доказали дискретность пространства" — мне будет проще её принять. Хотя для меня лично это совершенно ничего не поменяет. Но мнение настоящего физика на этот счёт услышать интересно — кому, как не ему, знать что творится на передовой науки.
Неважно, в чём оно измеряется. Важно, что для последовательного перемещения из одной точки в другую нужно затратить некоторое время. Если этих точек бесконечное количество, то и суммарно времени нужно затратить бесконечное количество. Таково моё рабоче-крестьянское понимание.

Идея дискретности пространства не значит разбивку на пиксели. Оно значит устойчивые и неустойчивые положения. Ну или как-то так.
Интересная теорема, не знал о такой. Но там говорится о распределении случайных величин, а не о функциях. На функции она не распространяется, что легко доказать от обратного.

Фурье-образом прямоугольной функции будет sinc, которая принимает нулевые значения в точках пересечения с осью абсцисс. Бесконечно умножая ноль на ноль всё равно получим ноль.

А Фурье-образом гауссианы тоже будет гауссиана, и она с нулём нигде не пересекается.
Теория относительности говорит о фундаментальном ограничении скорости взаимодействия.
Кажется, начинает доходить) Я всё думал, откуда там взялась нелинейность? А сейчас вспомнил, что в реальном мире пластина не может изгибаться бесконечно и максимальная амплитуда её колебаний ограничена.
Да не важно. Их же можно математически описать и аналитически посчитать предел в бесконечности.
какую бы функцию размазывания Вы не выбрали, при повторном многократном применении по ортогональным осям быстро сходится к изотропному гауссиану.
Это весьма спорное утверждение. Поскольку размазывание реализуется через свёртку, а свёртку можно рассматривать как перемножение спектров, то бесконечное перемножение произвольных спектров никак не может сходиться к гауссиане.
Непрерывное
Как тогда разрешить апорию Зенона?

«Чтобы преодолеть путь, нужно сначала преодолеть половину пути, а чтобы преодолеть половину пути, нужно сначала преодолеть половину половины, и так до бесконечности. Поэтому движение никогда не начнётся».
Если принять бесконечность пространства, тогда оно не должно быть ограничено не только снизу, но и сверху (мне так кажется). Но вроде на текущий момент принято считать, что вселенная конечна.
Об этом я и хотел сказать, критикуя вульгарный «эффект бабочки»: влияние флуктуаций в устойчивой системе не выходит за пределы своего масштаба.
Ситуация с «эффектом бабочки» несколько глубже. Дело даже не только в том, что человек имеет склонность выстраивать причинно-следственные связи там, где их нет и быть не может, в том числе и по причине чисто логического мышления. Дело в том, что математически нам привычнее рассматривать систему с точки зрения синтеза, когда поведение системы обусловлено поведением её более мелких подсистем, нежели с точки зрения анализа, когда наоборот, поведение подсистемы определяется системой в целом.

Теперь возьмём бабочку и заменим её на вирус. Пока он не оказывает влияния на человека — он, безусловно, флуктуация, да и размеры его ничтожны. Но как только он мутирует до смертельного и начинает бесконтрольно распространяться, убивая всё живое, то тут два варианта интерпретации:
1) влияние флуктуаций в устойчивой системе таки вышло за пределы своего масштаба,
2) система потеряла устойчивость и неважно, от чего они там все умрут.
Интересный момент: по тону статья написана как «математика для гуманитариев», а по содержанию скорее наоборот — «гуманитария для математиков», потому что нормальный человек не представляет и не может себе представить другого человека в виде векторного пространства.
А вы не могли бы немного пояснить свою работу человеческим языком? Вникать в тысячу других ссылаемых работ, посвящённых сферическим дискам в вакууме, мотивации слегка не хватает)

Насколько я понимаю, колебания чего бы то ни было моделируются волновым уравнением. Колебания плоского диска были рассмотрены ещё два века назад лордом Рэлеем. В общем случае решение волнового уравнения нетривиально и решается численно.

У вас диск имеет толщину, что усложняет моделирование. Но вы волновое уравнение не рассматриваете, а рассматриваете упрощённую модель через моды, на основе которых строите 4-мерную мат.модель с многообразиями и траекториями. Она всё ещё описывает колебания или уже что-то другое?

Information

Rating
1,737-th
Location
Россия
Works in
Registered
Activity