All streams
Search
Write a publication
Pull to refresh
178
1

Человек

Send message
объемная область, которая заключает в себе странный аттрактор, рождающийся при вынужденных колебаниях толстой пластины.
Когда речь заходит о колебаниях чего бы то ни было, первое, что приходит в голову — это гармонический анализ. Рассматривали ли вы спектральные характеристики этого аттрактора, а также воздействие на них начальных и возмущающих условий?
Прошу прощения, опечатался — не Крамера, а Кремера, Н.Ш.
Когда-то давно философы выясняли вопрос, что первично — материя или сознание и познаваем ли мир или нет. Сейчас эти холивары перешли в другую плоскость: что первично — объективная реальность или мат.модель, его описывающая, это реальность хаотична или это модель несовершенна? Может ли математика описать вообще всё или у неё тоже есть ограничения?

Можно ли назвать динамическую систему хаотичной, если она однозначно описывается дифференциальными уравнениями? Можно ли фликкер шум считать хаосом, если его спектр не выходит за границы розового шума?

На все эти вопросы нет ответа.
Какая-то непонятная внезапная прокрастинация про математику и теорию вероятностей.
Это статья вовсе не про математику и теорию вероятностей. Эта статья про монетку, которая ест людей. И про гиперболическую зебру. И про кошечку, которая живёт в кубике с дырками.
вы не можете просто так трактовать систему с неопределенным поведением компонентов как идеальную детерминированную систему.
А я и не пытаюсь. Я её трактую как модель идеальной детерминированной системы. Моделировать же в обе стороны можно — никто не запрещает моделировать идеальные математические структуры средствами неидеальной бренной реальности.

И в рамках этой модели мне совершенно неважна хаотичность на уровне электронов.
Нет, я не дразнюсь. Как оказалось, моё понимание сути хаоса несколько отличается от вашего. Возможно, в чём-то оно ошибочно. Мне хочется разобраться, действительно ли это ошибка. Если да, то исправить, если нет, то убедиться, что её нет. Ну и всегда приятно пообщаться с умным человеком)

Перейду к сути. Если стохастическую систему в виде электронной цепи с неопределённым поведением электронов можно использовать как детерминированную машину для вычислений, то где истина? Какой системой она является на самом деле — стохастической или детерминированной, если физически — это одно и то же устройство?
Одна и та же система может рассматриваться на разном уровне детализации и абстракции.

Вот ЭВМ — это же вроде детерминированная система? 2*2 всегда равно 4. Но реализована она на электронных компонентах, которые, по вашему утверждению, детерминированными не являются.
«Подмножество» я употребил в том же смысле, в каком множество целых чисел является подмножеством комплексных. В то время как «подсистема» предполагает разбиение на компоненты.
Правильно ли я понимаю, что подмножество стохастической системы вовсе не обязательно должно быть стохастическим?
Если в детерминированной системе присутствует стохастический параметр, система становится стохастической.
Тогда получается, что абсолютно все системы стохастические, поскольку случайность всегда присутствует на квантовом уровне. Или нет?
буриданов осёл
Там ситуация другая — у осла есть бесконечное время для размышлений над принятием решения, вследствие чего он и рискует умереть с голода. В нашем же случае время для принятия решения ограничено (в непрерывной модели так и вообще равно нулю), сам выбор неизбежен и вариант «не принимать никаких решений оставаясь на месте» отсутствует. Вместо очередей можно рассмотреть перестроение автомобилей по полосам, а неустойчивость при равнозначном бинарном выборе рассматривается например здесь.
Приношу извинения, сглупил — не прочитал описание под картинками.
Ну так и до буриданова осла опустить можно. Только неочевидность по сравнению с примерами статьи зашкаливает.
В аттракторах из статьи отсутствуют точки бифуркации, хотя упоминание их имеется; и они постоянно находятся в устойчивом положении, что не является демонстрацией хаоса.
Тогда получается, что и электрические цепи — стохастические, поскольку движение отдельно взятого электрона отследить невозможно. Но они же как-то работают, и даже рассчитываются через законы Ома, Киргофа и преобразование Лапласа (совсем не статистические методы)?
Вот вам более приземлённый пример.

Вы пошли в магазин за новым айфоном и оказалось, что там две примерно одинаковых очереди. Пока вы выбираете, в какую очередь встать — вы находитесь в неустойчивом положении и ваш выбор со стороны предсказать невозможно. А вот после того, как выбор сделан — пути назад уже нет и траектория до следующей точки бифуркации предопределена; а её устойчивость обеспечивают граждане спереди, сзади и ограничивающие заборы по бокам.
Хороший пример истинно стохастической системы — появление автомобилей на дороге.
Мне кажется, это не самый хороший пример. Движением автомобилей не управляет случайность. Автомобили не едут в случайную точку в случайное время и по случайному маршруту. Они едут конкретно (например) на работу, по определённому маршруту и в определённое время. Движение автомобилей регулируются светофорами, сервисами типа «Яндекс пробки» или социальными сетями, обеспечивающих (примерно) равномерную пропускную способность на дорогах. Появлению автомобиля предшествует звук мотора, свет фар или переключение светофора с красного на зелёный.
Ещё мне кажется, что вы выбрали не самые подходящие аттракторы для иллюстрации. На аттракторе Лоренца точки бифуркации более очевидны.
Меняет-меняет, это не просто игра формулировок.
Но вы же понимаете, что я говорил именно о моделях, а не о математических абстракциях?

Модели имеют ограничения, они — упрощение реального мира. Математики, строя свои системы, могут об этом не думать.
Да, математики могут не думать. А вот физики думать должны. Задача физики же не в том, чтобы объяснить устройство мира — с этим и теологи прекрасно справляются. Задача физики в том, чтобы миром управлять; и из математических моделей строить реальные устройства. И если работоспособность модели невозможно проверить экспериментом — то ценность этой модели в физике равна нулю.

А использую примеры из условно реального мира, как иллюстрации.
Вот тут-то я и усматриваю подводные камни, которые могут привести к ошибочным умозаключениям неподготовленного читателя. Одно дело, когда мы бросаем кубик — это эксперимент в чистом виде, в котором влияние непредвиденных факторов сведено к минимуму. И совсем другое другое дело — когда кубик бросает кто-то другой. Этот кто-то может банально утяжелить одну из граней, и тогда все наши статистические вычисления идут к чёрту. В реальной жизни кубик всегда бросает кто-то другой.

Моя задача — показать как устроен математический аппарат теории вероятностей и математической статистики тем, кому это интересно, но кто не получил (ещё) последовательного математического образования.
Боюсь, что чтобы увидеть математический аппарат — нужно сначала знать, как этот самый аппарат выглядит. А если не знать, то можно увидеть совсем не то, что показывает автор. И самое печальное — можно получить иллюзию знания вместо самого знания — после вашей книги читать Крамера будет очень, очень сложно)

Теория вероятностей применима к более широкому классу задач, чем анализ экспериментальных данных (это, скорее, область статистики)
«Есть 3 вида лжи: ложь, наглая ложь и статистика»© В частности, помимо корреляции есть ещё и ложная корреляция — и отделение одного от другого может оказаться весьма нетривиальной задачей.

называть книжку «Теория несчастья» или «Теория подлости» я не хочу.
Ну, есть же ещё много других вариантов названий) А так получается, что никакого счастья быть не может — доказано ведущими стоматологами математиками.

Вам знакома книга «Как не ошибаться. Сила математического мышления» Джордана Элленберга? Вот её название совершенно точно отражает содержание.


P.S. на всякий случай: вы же просили комментарии, чтобы сделать вашу книгу лучше? Не воспринимайте мои слишком всерьёз — это комментарии гуманитария)

Information

Rating
1,534-th
Location
Россия
Works in
Registered
Activity