All streams
Search
Write a publication
Pull to refresh
23
1
Ваулин Арис Ефимович @VAE

Пользователь

Send message

Наноматериалы и нанотехнологии. Часть V

Level of difficultyMedium
Reading time18 min
Views1.2K

В этой части «Наноматериалов и …» будем рассматривать многообразие математических основ устройства материальных тел и веществ. В первую очередь сюда относятся геометрические и алгебраические структуры, обеспечивающие строгое описание и моделирование твердых тел (кристаллов). Уже упоминалось ранее, что построение атомных (геометрических) решеток тел подчинено кристаллографическим законам, которые включают 230 кристаллографических групп, открытых (1890) российским ученым Федоровым Е.С. и немецким А. Шёнфлисом.

Здесь замечу, что вопросы устройства веществ напрямую касаются создания элементов (транзисторов, резисторов и др.) в наноэлектронике, фотонике и спинтронике, которые определяют не только настоящее, но и будущее IT-технологий. По-видимому, непонимание этого положения движет минусаторами в комментариях к моим статьям.

В спинтронике альтермагнетики могут иметь значительные применения в области разработки твердотельных аккумуляторов и компьютерной памяти. В то же время они могут обеспечить преимущества ферромагнетиков, которыми не обладают антиферромагнетики.

До недавнего времени реализация такой комбинации свойств считалась невозможной, и открытие альтермагнетизма предоставляет новые возможности для исследований и технологического развития. Интересно, что совсем недавно ученые открыли другую новую странную форму магнетизма – «кинетический ферромагнетизм».  Об этом рассказывается здесь.

Цель публикации в первую очередь образовательная, познавательная, облегчить самостоятельное овладение фундаментальными представлениями и понятиями, популяризация науки, а также стремление привлечь в ряды исследователей, в науку приток новых молодых умов, вызвать в таких умах стремление к поиску ответов на возникающие вопросы. Масштабность темы требует ввести разумные ограничения.

Читать далее

Наноматериалы и нанотехнологии. Часть IV

Level of difficultyMedium
Reading time10 min
Views1.6K

В 1986 году в Австралии был открыт редкий биоминерал – медный оксолат кальция. Его назвали мулуит. В природе этот минерал связывают с деятельностью живых организмов. Он обнаружен в лишайниках на медьсодержащих минералах. Структура кристалла долгое время (почти 40 лет) не была достоверно определена. Получение кристаллов и расшифровка структуры мулуита оказалась задачей. Кристаллографам СПбГУ в лабораторных условиях удалось синтезировать кристаллы мулуита, пригодные для рентгеноструктурного анализа, и которые возможно подробно изучить на имеющемся оборудовании.

Медь является токсичным элементом, а образование нерастворимого мулуита может использоваться в технологиях биоремедиации (очистки почв и вод). Для очистки почвы от меди можно использовать микроорганизмы, продуцирующие оксолаты – производные щавелевой кислоты. В промышленности мулуит используется для получения наночастиц, в частности, оксида меди.

В предлагаемой публикации будет рассмотрена та основа, которая обеспечивает представление внутреннего устройства материи в форме кристалла (атомной структуры, решетки). Оказалось, на нашей планете физические законы таковы, что ограничивают разнообразие представителей мира кристаллов. Имеются в виду те 230 пространственных Фёдоровских кристаллографических групп, которым подчинены закономерности устройства вещества. Этот взгляд можно воспринимать как геометрическую интерпретацию пространства со всеми его свойствами, понимая, что структуры вещества диктуются не геометрией, а химией и физикой, энергиями материальных частиц и их взаимодействием.

При этом поражает насколько глубоко и адекватно человеческий разум предвидел такие структуры. При всей ограниченности возможностей инструментария людям удалось получить изображения того невидимого невооруженным глазом мира и убедиться в правильности своих представлений

Цель публикации в первую очередь образовательная, познавательная, популяризация науки, а также стремление привлечь в ряды исследователей, в науку приток новых молодых умов, вызвать в таких умах стремление к поиску ответов на возникающие вопросы.  Масштабность темы требует ввести разумные ограничения.

Читать далее

Наноматериалы и нанотехнологии. Часть III

Level of difficultyMedium
Reading time24 min
Views3.3K

В предлагаемой статье речь пойдет об электронной микроскопии. Рассматриваются различные типы электронных микроскопов (ЭМ), включая просвечивающие и зондирующие микроскопы с высоким разрешением, рентгеновская микроскопия и анализ, новейшие методы получения изображения посредством обратно рассеянных электронов, а также методы электронной криомикроскопии для исследования биообъектов. Микроскопы — важное средство измерения размеров и форм объектов. Что касается рентгеновского микроскопа, то важным требованием является представление объекта в кристаллической форме. Дж. Уотсон и Ф. Крик вынуждены были найти кристаллизованную молекулу ДНК, чтобы приступить к исследованию.

Использование электронных микроскопов (ЭМ) обеспечивает (включает) изучение материи на уровне наночастиц, нанопроволок, нанотрубок, трехмерных наноструктур с размерами менее 100 нм, квантовых точек, магнитных наноматериалов, фотонных кристаллов и биологических наноструктур. Рассматриваются кратко методы зондовой и растровой электронной микроскопии (РЭМ) применительно к нанотехнологиям, а также упоминается не только исследование характеристик различных наноматериалов, наноструктур и нанообъектов, но и технология их изготовления in situ (на месте).

Сканирующим туннельным микроскопом (СТМ) в 1989 г. исследователи выложили из 35 атомов ксенона три буквы логотипа IBM. Прибор (микроскоп), позволил получить изображение объектов с максимальным увеличением до 106 раз, благодаря использованию, в отличие от оптического микроскопа, вместо светового потока, пучка электронов с энергиями от 200 эВ до 400 кэВ и более (например, просвечивающие электронные микроскопы высокого разрешения с ускоряющим напряжением 1 МВ). СТМ показала себя как наиболее простой и удобный метод манипулирования отдельными атомами (IBM).

Спустя почти 25 лет IBM сделала мультфильм, в котором действовала фигура мальчика. Все сцены фильма были сложены из 242 молекул угарного газа. Как ученые работают с отдельными атомами и молекулами? Метод может быть использован для модификации наноструктур, применяющихся в фотонике и спинтронике.

Цель публикации в первую очередь образовательная, познавательная, популяризация науки, а также стремление привлечь в ряды исследователей, в науку приток новых молодых умов, вызвать в таких умах стремление к поиску ответов на возникающие вопросы. Масштабность темы требует ввести разумные ограничения.

Читать далее

Наноматериалы и нанотехнологии. Часть II

Level of difficultyMedium
Reading time19 min
Views1.6K

В предлагаемой вниманию читателей работе сосредоточимся на изложении вопросов образования (синтеза, создания) наноматериалов подходом («снизу‑вверх»), т. е. на сборке, самосборке и катализе. В макромире аналогичная задача синтеза изделий также решается при использовании подходов «снизу‑вверх» и часто «сверху‑вниз», но методы совершенно другие, которые перенести в наномир по ряду принципиальных причин не удается. Тем не менее, и в этой области специалисты не стоят на месте и находят со временем более совершенные решения. Имеются ввиду в первую очередь возможности 3D‑печати. Печать выполняется на подложке (англ. carrier или support), которая является инертным или малоактивным материалом, служащим для стабилизации на его поверхности частиц активной каталитической фазы.

Новинки в макромире интересны, но о них упомянем очень кратко на основе публикаций в печати. Главное внимание уделим наноснтезу наноматериалов. Важной стороной производства является масштабность и применимость в интересах хозяйственных отраслей.

Цель публикации в первую очередь образовательная, познавательная, популяризация науки, а также стремление привлечь в ряды исследователей, в науку приток новых молодых умов, вызвать в таких умах стремление к поиску ответов на возникающие вопросы. Масштабность темы требует ввести разумные ограничения.

Читать далее

Наноматериалы и нанотехнологии. Часть I

Level of difficultyMedium
Reading time18 min
Views4.9K

Компания Bayer (Германия 2007) запустила реактор мощностью 200 т/год многостенных углеродных трубок, но им пришлось ограничить производство. Многостенные трубки не нашли ожидаемого сбыта, они делались из графита, а не из графена, одного атомного слоя углерода.

Русский автор патента Graphetron Михаил Предтеченский придумал ключевую фразу: «Любым способом создается движущаяся в потоке углеводородного газа частица и на ней растет одностенная трубка». Если в технологии так, то этот патент, если нет, то другой. После этого в патенте можно ничего не называть и не раскрывать. В феврале 2010-го Юрий Коропачинский вместе с Олегом Кирилловым, Юрием Зельвенским и Михаилом Предтеченским создали компанию OCSiAl. Увидеть генератор Graphetron нельзя, он как камень Кааба закрыт занавесом. На сегодняшний момент OCSiAl (с Graphetron) единственный в мире промышленных масштабах производитель одностенных (однослойных) графеновых трубок (SWCNT).  Стремительно расширяются и области применения графеновых нанотрубок.

Для понимания свойств материальных тел на наномасштабном (от 1 до 100 нанометров) уровне необходимо иметь представление о соответствующих их свойствах на макроскопическом и мезоскопическом уровнях. Приставка нано – означает одну миллиардную (10–9) чего-либо, например, метра. Законы термодинамики в нашем мире играют ведущую роль, и она остается справедливой (сохраняется) для тел с нано размерностью, хотя свойства веществ при измельчении претерпевают существенные изменения.

Я не буду здесь говорить о физических законах термодинамики, а приведу лишь теорему Гинзберга – пародию на законы термодинамики, что должно привести читателя к сопоставлениям.

0. Есть игра. (следствие нулевого закона термодинамики)
1. Вы не можете выиграть. (следствие первого закона термодинамики)
2. Вы не можете выйти в безубыток. (следствие второго закона термодинамики)
3. Вы даже не можете выйти из игры. (следствие третьего закона термодинамики)

Понятно, что исчерпывающее изложение вопроса в ограниченной по объему статье невозможно, но как ознакомительный ввод в проблему эта работа предлагается читателям

Цель публикации в первую очередь образовательная, познавательная, популяризация науки, а также стремление привлечь в ряды исследователей, в науку приток новых молодых умов, вызвать в таких умах стремление к поиску ответов на возникающие вопросы. Масштабность темы требует ввести разумные ограничения.

Читать далее

Типизация моделей составных чисел

Level of difficultyMedium
Reading time13 min
Views1.5K

Подход, выбранный в публикуемой работе для исследования составного числа, основан на концепции закона распределения делителей (ЗРД) числа в натуральном ряде чисел (НРЧ). Приводятся общая и каноническая модель числа, сохраняющая основные свойства, присущие большинству реализаций, но имеющая стандартный (наиболее простой) вид. Возвращаясь к прошлым публикациям, перечитал комментарии и принял решение создать эту.

Разнообразие множества исследуемых и различающихся реализациями моделей чисел вынуждает исследователя вводить для них типизацию (не классификацию). Два близких по значению нечетных числа могут иметь разный тип. Дело в том, что разработанная списочная многострочная модель (СММ) составного числа выявляет весьма тонкие, но существенные различия даже в очень близких числах из одного класса.

При введении (загрузке) в модель исходного значения N эти различия при их учете влекут использование отличающихся алгоритмов обработки, которые приспособлены к конкретному типу чисел. В работе приводится пример двух близких  N1 = 1961 и N2 = 1963 чисел, тип которых не совпадает. Это, в свою очередь, приводит к выбору и исполнению соответствующих алгоритмов обработки этих чисел.

Цель публикации в первую очередь образовательная, познавательная, популяризация науки, а также стремление привлечь в ряды исследователей, в науку приток новых молодых умов, вызвать в таких умах стремление к поиску ответов на возникающие вопросы.  Масштабность темы требует ввести разумные ограничения на излагаемый материал после краткого панорамного её рассмотрения.

Читать далее

КЛЕТКА ХIII. Психология и фобии

Level of difficultyEasy
Reading time12 min
Views1.9K

Одинокий человек чаще испытывает тревогу и даже страх. Социальная изоляция ухудшает эмоциональный фон – у одиноких людей чаще возникают депрессии и тревожные расстройства, нарушения когнитивных функций. Человек нуждается в общении и поддержке, в одобрении: кто-то больше, кто-то меньше. В одиночестве большинство людей деградируют и чахнут. В статье опубликованной в Journal of Neurology Neurosurgery &Psychiatry приводится анализ 15 исследований, показывающий связь между личной жизнью и ранним появлением симптомов слабоумия. Риск появления деменции в пожилом возрасте оказался на 42% выше у тех, кто не имел постоянного партнера (группа риска – холостяки и вдовцы).

Разного рода страхи (фобии) испытывают и не одиночки, а вполне внешне благополучные люди. Как известно, страх – это биологическая и независимая от сознания эмоция, тогда как трусость и смелость – черты характера (темперамент) и форма социального поведения, управляемая сознанием.

Цель публикации в первую очередь образовательная, познавательная, популяризация науки, а также стремление привлечь в ряды исследователей, в науку приток новых молодых умов, вызвать в таких умах стремление к поиску ответов на возникающие вопросы.  Масштабность темы требует ввести разумные ограничения на излагаемый материал после краткого панорамного её рассмотрения.

Читать далее

Клетка ХI. Иммунитет человека

Reading time17 min
Views2.7K

Введение. Ранее в публикацииях о живой клетке мы дошли до описания живого организма. В организме человека размещаются системы органов, которые его образуют, и они были кратко рассмотрены в предыдущих публикациях. Пять из всех систем органов человека являются регулирующими (управляющими) важнейшие процессы жизнедеятельности: нервная, кровеносная, эндокринная, лимфатическая и иммунная. Обеспечение безопасного функционирования организма возлагается на внешние и внутренние системы.

Иммунитет – это способность организма самостоятельно защищать (делать безопасной) собственную целостность и биологическую индивидуальность. Иммунная система появилась вместе с многоклеточными организмами и создавалась, как система, способствующая их выживанию и развитию. Иммунная система, как и другие, в теории представлена тремя уровнями: органным, клеточным и молекулярным со сложнейшими взаимодействиями между ними.

Иммунология – наука, изучающая специфические реакции организма, направленные на обеспечение безопасности, защиту здоровья, собственной целостности и биологической индивидуальности.

Здоровьем по определению ВОЗ является состояние полного физического, душевного и социального благополучия, а не только отсутствием болезней и физических дефектов. Это определение приводится в Преамбуле к Уставу Всемирной организации здравоохранения, (ВОЗ) принятому Международной конференцией здравоохранения, Нью-Йорк, 19-22 июня 1946 г.; подписанному 22 июля 1946 г. представителями 61 страны (Официальные документы Всемирной организации здравоохранения, Nº 2, стр. 100) и вступившему в силу 7 апреля 1948 г. С 1948 г. это определение не менялось.

Читать далее

Клетка X. Старение организма

Level of difficultyEasy
Reading time21 min
Views12K

На Земле обнаружено первое и пока единственное многоклеточное бессмертное существо. Это медуза Turritopsis dohrnii (туритопсис нутрикула). Она живет пока ее кто‑нибудь не съест или не разрушит. Медуза в благоприятных для жизни условиях обладает фантастическими способностями — может превращаться из взрослой особи в юную и проделывать такой фокус неограниченное количество раз.

Американский физик, лауреат Нобелевской премии Р. Фейнман заметил: «Если бы человек вздумал соорудить вечный двигатель, он столкнулся бы с запретом в виде физического закона. В отличие от этой ситуации в биологии нет закона, который утверждал бы обязательную конечность жизни каждого индивида».

У медузы Turritopsis dohrnii действительно есть механизм вечной жизни, который называется трансдифференциация клеток. Она может размножаться и при этом не умирать.

Её уникальность в том, что после продолжения рода она не стареет, а молодеет и запускает новый цикл жизни. Клетки медузы могут сразу превращаться из одного типа в клетки другого типа, минуя стадию типа стволовых клеток («болванки»). Это и есть трансдифференциация.

Надо сказать, есть ещё одно живое существо, которому приписывают бессмертие. Это пресноводный полип Hydra vulgaris — гидра обыкновенная. Это открытие доказывает, что вечная жизнь существует. А природа ничего никому не должна.

Читать далее

Клетка IX, организм человека

Level of difficultyMedium
Reading time15 min
Views4.3K

Организм — это самостоятельно существующая единица органического мира, представляющая собой саморегулирующуюся систему, реагирующую как единое целое на различные изменения внешней среды. Организм может существовать лишь при постоянном взаимодействии с окружающей его внешней средой и самообновляется в результате такого взаимодействия. Как подчеркивал И. М. Сеченов, «организм без внешней среды, поддерживающей его существование, невозможен».

Роль генетического кода и генома для становления и развития живого многоклеточного организма нельзя переоценить, но не удается отыскать источники и ссылки на то, как проявлялось и проявляется его влияние в этом направлении. Понятно, что все развитие происходило не само по себе, имела место этапность, стадийность, очередность приобретения свойств и функций, одним словом, шла эволюция.

Читать далее

Клетка VIII. Международные проекты исследования человека

Level of difficultyMedium
Reading time26 min
Views3.1K

Не только интеллектуальные озарения играют важную роль в науке. Такие технические прорывы, как телескоп в астрономии, микроскоп в биологии, спектроскоп в химии, приводят к неожиданным и замечательным открытиям. Вооружившись техническими инструментами, человек получает возможность «видеть» через узенькие окна (видимый и радиодиапазон) с поверхности Земли масштабные миры Вселенной, а с помощью «Хаббла», «Джеймса Уэбба» и «Спектра‑РГ» дополнительно через ультрафиолетовый, инфракрасный и рентгеновский диапазоны из космоса, также через другие окна микроскопов и спектроскопов — видеть микро и нано миры элементарных частиц материи.

Похожую революцию в геномике, протеомике производят сейчас мощные компьютеры, ИИ и информация, содержащаяся в ДНК.

Читать далее

Материя. Стандартная модель

Level of difficultyMedium
Reading time18 min
Views11K

Стандартная модель (СМ) – теоретическая конструкция в физике элементарных частиц, описывающая электромагнитноеслабое и сильное ядерное взаимодействие, все элементарные частицы.

Физика последних 2-3 веков представляла собой совокупность разделов (частных теорий), содержащих в каждом множество описаний явлений, законов, математических соотношений, связывающих порой непростые переменные и множество разнообразных понятий, …. Одних элементарных частиц насчитывалось более 60, что затрудняло общение и работу самих ученых.

Стремление как-то все это упорядочить, описать устройство, свойства и законы Вселенной, привести в состояние доступное для понимания и усвоения учащимися и даже простыми людьми (обывателями), сформировать у них достаточно ясную и понятную картину окружающего нас материального мира (мировоззрения), привело к необходимости выявить первооснову, установить стержневое, объединяющее все выявленные и установленные данные, направление дальнейшего развития самой физики.

Другими словами, потребовалось создать одну общую теорию, объединяющую и согласующую все существующие частные теории. Упрощая подход, будем считать, что единая теория не более чем модель Вселенной или некоторой ее части, а также набор правил, которые помогают соотнести практические наблюдения и положения теории.

Цель публикации в первую очередь образовательная, познавательная, популяризация науки, а также стремление привлечь в ряды исследователей, в науку приток новых молодых умов, вызвать в таких умах стремление к поиску ответов на возникающие вопросы.  Масштабность темы требует ввести разумные ограничения на излагаемый материал после краткого панорамного её рассмотрения.

Читать далее

КЛЕТКА IV. Редактирование генома человека

Level of difficultyMedium
Reading time15 min
Views3.2K

В статье «Клетка III» отмечалось, что в человеческом организме насчитываются триллионы клеток, подразделяющиеся на не менее чем 350 типов. Понятно, что каждый тип клетки отличается от других многими свойствами, составом и функциями. Здесь мы рассмотрим лишь малую часть (нейроны, стволовые клетки) типов, но с выдающимися, по нашему мнению, важными характеристиками. Лет 40 - 50 назад меня интересовали такие вопросы.

Как клетки при удвоении, сохраняя статус исходной клетки, преобразуются в итоге в клетки разных тканей, органов и создают в целом очень сложно устроенный организм? Как осуществляется дифференциация клеток? Возможно ли клетке фиксированного типа поменять свой тип?

Ответ на последний вопрос положительный. Подобный феномен в природе называется
трансдифференцировкой клеток. Это редкий биологический механизм, который
обеспечивает превращение клеток одного типа в клетки

В настоящее время с помощью СК, взятых у пациента из костного мозга, жировой ткани или периферической крови, в лабораториях можно вырастить любой орган, что сводит на нет риск отторжения органа при трансплантации. Другие клетки человека, допустим из печени, никак не могут измениться и стать, к примеру, нервными или мозговыми.

Подобные проблемы биологии человека решаются, в частности, медицинской генетикой, генной инженерией. Предметом у них является профилактика и лечение наследственных болезней, которых насчитывается уже не одна тысяча, а также модифицирование генома человека и изменение наследственной предрасположенности к заболеваниям.

Цель публикации в первую очередь образовательная, познавательная, популяризация науки, а также стремление привлечь в ряды исследователей, в науку приток новых молодых умов, вызвать в таких умах стремление к поиску ответов на возникающие вопросы.  Масштабность темы требует ввести разумные ограничения на излагаемый материал после краткого панорамного её рассмотрения.

Читать далее

КЛЕТКА III. Строение, состав, функции

Level of difficultyMedium
Reading time18 min
Views59K

В этой публикации будет рассматриваться живая клетка (планеты Земля). Эта клетка по своей сложности (структуры, состава, функций) многократно превосходит все, что нами рассматривалось в статьях «Клетка I и Клетка II». Но для того, чтобы двигаться дальше, необходимо иметь хорошее представление и понимание как все устроено и действует в живых организмах Земли.

 Наш разговор пойдет про Жизнь – биологическое явление как минимум планетарного масштаба, но можно считать и космического. Человека всегда интересовало это явление, но сложность его, доступность для изучения и понимания оценивается и сегодня несколько упрощенно. Даже такие проекты как «Геном человека», «Протеом человека» или «Мозг человека» лишь несколько приоткрыли тайны жизни, но породили массу новых вопросов к природе этого явления, ответы на которые в ближайшие годы даже не ожидаются.        

Продолжая публикации о живой мыслящей материи, жизни и клетке (как бы единицы жизни) на планете Земля, пришло время сказать о существующих живых клетках (из которых состоим мы с вами), об их составных частях, устройстве и функциях. Речь пойдет о теории клетки и ее моделировании. Это вопросы философского мировоззренческого характера, но важны для каждого человека. Для чего вообще нужно мировоззрение? Классик материализма так ответил на этот вопрос. Мировоззрение человеку нужно, чтобы он управлял событиями, а не события управляли им.

Цель публикации в первую очередь образовательная, познавательная, популяризация науки, а также стремление привлечь в ряды исследователей, в науку приток новых молодых умов, вызвать в таких умах стремление к поиску ответов на возникающие вопросы.  Масштабность темы требует ввести разумные ограничения на излагаемый материал после краткого панорамного ее рассмотрения.

Читать далее

КЛЕТКА II, теории возникновения жизни

Level of difficultyMedium
Reading time20 min
Views6.5K

В предыдущих публикациях «Мыслящая материя» и «Клетка I, как возникает живая материя» автор не касался деталей и условий научных теорий о возникновении жизни. В рамках таких теорий считается, что для читателя должны быть раскрыты необходимые и достаточные условия существования живой материи. Здесь эти теории, законы, задачи и методы решения будут кратко рассмотрены. 

Необходимое условие существования живой материи – она должна быть обособленной некими границами от остальной материи и в их пределах обладать свойствами живого, часть которых названа в «клетка I». а достаточными условиями – примем потенциальные возможности поддерживать состояние жизни, распространять его в допустимых для живого в окрестностях                                            

Как материя (не вся) стала живой? Она ведь почти того же состава, что и вся остальная. Дело в ее особой организации. Вопросы о жизни никогда не были простыми и легкими, но время от времени возникают в публикациях и активно обсуждаются. Вот об условиях и процессах организации элементов материи, приводящей к такому явлению как Жизнь, речь и пойдет дальше.

Цель публикации в первую очередь образовательная, познавательная, популяризация науки, а также стремление привлечь в ряды исследователей, в науку приток новых молодых умов, вызвать в таких умах стремление к поиску ответов на возникающие вопросы.  Масштабность темы требует ввести разумные ограничения на излагаемый материал после краткого панорамного ее рассмотрения.

Читать далее

КЛЕТКА I, как возникает живая материя

Level of difficultyMedium
Reading time12 min
Views9.6K

В предыдущей публикации «Мыслящая материя» не были оговорены условия ее существования считалось, что для читателя это достаточно очевидно. Здесь эти условия будут рассмотрены. Необходимое условие существования мыслящей материи – она должна быть обособленной некими границами от остальной и в их пределах быть живой материей со всеми ее атрибутами, а достаточными условиями – примем наличие в пределах такой обособленности границами некоего органа (мозга) и в нем механизмов создания и восприятия мыслей. Если необходимое условие воспринимается более-менее очевидным, то с достаточными все несколько сложнее (например, для умалишенных).

Не определялся и сам объект «мысль, мышление» в предположении, что на бытовом уровне он понимается большинством читателей одинаково. На память приходят дебаты по поводу публикации о сознании человека. До сих пор я с благодарностью вспоминаю некоторые комментарии, расширившие мое представление о теме. В представляемой сейчас статье я не буду говорить о достаточных условиях существования «мыслящей материи», а ограничусь одним необходимым.

Современное определение для землян: «Жизнь – это макромолекулярная открытая система, которой свойственны иерархическая организация, способность к самовоспроизведению, самосохранению и саморегуляции, обмен веществ, тонко регулируемый поток энергии».                                                               

Как материя (не вся) стала живой? Она ведь почти того же состава, что и вся остальная. Дело в ее особой организации. Вопросы о жизни никогда не были простыми и легкими, но время от времени возникают в публикациях и активно обсуждаются. Вот об условиях и процессах организации элементов материи, приводящей к такому явлению как Жизнь, речь и пойдет дальше.

Цель публикации в первую очередь образовательная, познавательная, популяризация науки, а также стремление привлечь в ряды исследователей, в науку приток новых молодых умов, вызвать в таких умах стремление к поиску ответов на возникающие вопросы.  Масштабность темы требует ввести разумные ограничения на излагаемый материал после краткого панорамного ее рассмотрения.

Читать далее

Строение атома и материи

Level of difficultyHard
Reading time18 min
Views21K

Модель вещества (атома) в настоящее время разработана в деталях и понятна настолько, что колоссальную энергию, заключенную в нем, научились извлекать и поставили на службу человеку (в первую вчередь это АЭС). Тем не менее хотелось бы убедиться в правильности наших представлений об атоме, увидеть изображение реального атома, «пощупать» руками, прогнозировать дальнейший прогресс исследований вещества.

Для проведения исследований структуры вещества в динамике необходим источник синхротронного излучения высокой энергии. В РФ под Новосибирском в наукограде Кольцово Институт ядерной физики (ИЯФ) СО РАН им. Г.И. Будкера ведет строительство такого источника поколения 4+СКИФ (электроны будут разгоняться до энергии 3ГэВ). Ожидается, что ввод в строй СКИФа позволит осуществить серьезный прорыв в материаловедении и многих других научных направлениях

Ученые США (Ун-т Огайо) впервые сделали рентгеновский снимок отдельного атома. Атомы стало возможно извлекать поштучно, перемещать и синтезировать из них конструкции, визуализировать с помощью сканирующих зондовых микроскопов. Но без рентгеновских лучей невозможно определить из чего они состоят. Впервые атом «просветили» лучами. Стало возможно назвать не только тип элемента, но и его химическое состояние. В публикации Science Daily приводятся примеры атомов железа (26) и тербия (65). Сейчас стало возможно определить тип конкретного атома по числу протонов. Благодаря прорыву можно будет назвать не только тип элемента, но и его химическое состояние. Это позволит лучше манипулировать частицами внутри различных материалов для удовлетворения потребностей различных отраслей науки и практики.

Публикация имеет образовательную направленность и нацелена внести ясность в те проблемы, которые удалось преодолеть при получении изображений университетскими учеными.

Читать далее

Мыслящая материя

Level of difficultyMedium
Reading time13 min
Views4.9K

Однажды известного физика спросили: что по-вашему мнению является самым удивительным фактом в мироздании? То, что сияющие и сгорающие, взрывающиеся звезды, туманности, планеты и все, все остальное, не исключая и нас самих, создано из одного и того же материала, по одним и тем же фундаментальным законам. Я бы добавил к этому, что мы, являясь материей, думаем о ней, о том, как в ней все устроено. Не исключая при этом устройства и Homo sapiens (человека разумного).

Природа могла бы ответить словами известной песни «я его слепила из того, что было». И не просто было, а еще и доступно, например, вода или атмосферный азот. Действительно, на каждые 200 наших атомов приходится 126 – атомов водорода, 51 – кислорода, 19 – углерода, 3 – азота и оставшийся один атом делится между всеми остальными элементами, привлекаемыми для создания Homo sapiens.

Читать далее

Единство и разнообразие материи

Level of difficultyMedium
Reading time12 min
Views2.2K

Количество разных элементов конечно или может увеличиваться без ограничений? Почему в тяжелом атоме, начиненном положительными протонами, электрические силы отталкивания не разрывают ядро на части? Ответ, подтвержденный экспериментом, заключается в том, что существует не подозревавшееся ранее, притягивающее взаимодействие протонов, которое аннулирует отталкивание и сохраняет ядро в целости. Притягивание оказывается сильнее электромагнитного взаимодействия его стали называть «сильным». Но вдали от ядра атома следы такого взаимодействия не обнаруживаются, следовательно, его радиус действия мал. Этим Джон Гриббин, в работе Вселенная: Биография, Penguin Books / Allen Lane, Великобритания, 2007, стр. 11.объяснил отсутствие ядер крупнее урана. Существуют два разных макета Стандартной модели, которая, как известно, является кратким изложением понимания физиками строительных блоков материи (фермионов) и сил, склеивающих их вместе (бозонов). Стандартная модель также, как Периодический закон, является периодической и имеет три поколения (периода) фермионов (I, II, III) с повторяющимися для каждого зарядовыми и спиновыми свойствами.  

По одной из гипотез, учитывающих предельные релятивистские эффекты, о том, что ни один электрон, вращающийся вокруг атомного ядра SHE, не может иметь скорость, равную или превышающую 0,92c (где c — скорость света), без значительного увеличения вероятности захвата электрона (т. е. обратного бета-распада) этим атомным ядром.

Гипотеза положена в основание статьи доктора Ф. В. Джакоббе, опубликованной в Electronic Journal of Theoretical Physics ( www.ejtp.com) .) (№1, 2004 г.), в которой предлагается «метод оценки максимально возможного атомного номера (т. е. значения Z), которым могут обладать относительно стабильные сверхтяжелые элементы (СТЭ).

Читать далее

Графы и программирование

Level of difficultyMedium
Reading time12 min
Views21K

Что положить в основу классификации графов, какие их признаки и свойства? Единственного правильного ответа на вопрос нет. Естественная классификация пока не открыта поэтому пользуемся искусственной, которая создается конкретным автором для решения конкретного круга задач. Полезными признаками часто оказываются такие как количество вершин, ребер, распределение степеней вершин и др. Важно, что удается разделить все множество графов на классы и дальше работать с ограниченным множеством, не рискуя потерять оптимальный объект.

Характеристика связности графов часто описывается достижимостью из некоторой вершины графа всех других, а очевидное средство такой достижимости проложенный между парой вершин путь. Наличие множества путей, покрывающих вершины и\или ребра (дуги) графа, обеспечивает часто решение целевых задач таких, например, как минимизация контрольных точек или тестирование программ. Затрагиваются вопросы и цикломатической сложности графа.

Вопросы синтеза и исследования управляющих графов программ остаются пожалуй самым надежным средством отладки и совершенствования программ для ЭВМ. Третья статья цикла освещает кратко эту актуальную тему. Параллельно для внешних программ реализуется процедура выявления программных закладок и своевременно не удаленных контрольных точек.

Читать далее

Information

Rating
1,734-th
Location
Санкт-Петербург, Санкт-Петербург и область, Россия
Date of birth
Registered
Activity