Обеспечиваем качество данных в компании. Подборка open-source-инструментов для Data Quality

Привет, Хабр! Я Алексей Чумагин, Data Quality Team Lead Островка. В компании мы работаем с десятками источников данных: авиакомпании, отели, агрегаторы, платёжные сервисы. При этом источники постоянно обновляются: добавляются партнёры, меняются API и форматы. В таких условиях Data Quality становится непрерывным процессом, встроенным в ежедневную работу, а вовсе не стереотипным «набором тестов, которые раз в сутки что-то проверяют».
Качественные данные зависят от выстроенных процессов: автоматизации, прозрачности, быстрой реакции на инциденты. Мы смотрим на Data Quality как на живую экосистему, где тесты — лишь одна из составляющих. Исходя из этого строим в компании единую Data Quality Platform.
Архитектура нашей платформы организована вокруг следующих задач:
автоматизация создания и выполнения тестов;
их централизованное хранение;
визуализация результатов;
мгновенное оповещение команд об инцидентах.
Вся эта экосистема работает в едином ритме с основными data-процессами компании.
Ниже — подборка инструментов, из которых состоит наша платформа. Их легко внедрить и в других IT-компаниях: стек масштабируемый, гибкий и не требует больших затрат на лицензии.
Какие инструменты мы используем в Data Quality
1. Ядро и автоматизация
В качестве ядра системы мы выбрали Soda Core — движок, который позволяет формализовать правила качества: целостность, уникальность, диапазоны значений. Тесты описываются декларативно, что упрощает поддержку и масштабирование.
После того как тесты написаны, их запуск и оркестрацию мы доверяем Apache Airflow. Он автоматически запускает проверку после ETL-процессов, управляет зависимостями и расписанием, что критично для стабильной работы пайплайнов.
Чтобы не тратить время на рутинное написание DAG’ов для новых тестов, мы используем DAG Factory — генератор DAG’ов, позволяющий держать код тестов и их запусков в едином месте, легко масштабировать количество проверок.
2. Интеграция и доступ
Важной частью платформы стала интеграция с другими системами. Для этого мы подняли сервисный слой на FastAPI: через API можно запускать тесты, получать результаты, интегрировать платформу с внешними инструментами.
Для визуализации выбрали Streamlit — он позволяет быстро собирать дашборды и интерактивные отчёты, которые особенно удобны инженерам для экспресс-проверок и разбора логов ошибок.
Но не все участники процесса хотят разбираться в технических деталях. Менеджеры и аналитики зачастую предпочитают DataHub — каталог метаданных, где хранятся все проверки, их результаты, а также информация о таблицах, lineage и пайплайнах. Это позволяет сделать качество данных частью общего ландшафта данных компании.
3. Оперативность и реакция
Все алерты и уведомления о результатах тестов автоматически отправляются в корпоративный мессенджер, чтобы команды могли оперативно реагировать на проблемы.
Вся DQP-платформа развернута в Kubernetes, — это обеспечивает масштабируемость, отказоустойчивость и централизованное управление компонентами.
И почётное упоминание ещё одной неизбежно важной технологии: для ручных ad-hoc-проверок мы, конечно же, используем старый добрый SQL. Без него ни одна оперативная сверка или исследование гипотез не обходится.
Итого: наш Data-Quality-стек — это комбинация проверенных open-source-инструментов, которые удобны на практике: легко автоматизируем тесты, быстро видим результаты, интегрируемся с чем угодно и не особо беспокоимся о лицензиях. Всё масштабируется, поддерживается инженерами, а не только админами и даёт нам уверенность в качестве данных, даже когда вокруг всё меняется.
А какие инструменты используете вы для контроля качества данных? Что бы вы добавили или изменили в нашем подходе? Будем рады обсудить в комментах!
***