DAG’и без напрягов: наш опыт использования метаданных при работе с Apache Airflow

Apache Airflow – простой и удобный batch-ориентированный инструмент для построения, планирования и мониторинга дата-пайплайнов. Ключевой его особенностью является то, что, используя Python-код и встроенные функциональные блоки, можно соединить множество различных технологий, использующихся в современном мире. Основная рабочая сущность Airflow – DAG – направленный ацикличный граф, в котором узлами являются задачи, а зависимости между задачами представлены направленными ребрами.
Те, кто использует Apache Airflow для оркестрации задач загрузки данных в хранилище, наверняка оценили гибкость, которую он предоставляет для решения шаблонных задач. Когда весь процесс разработки сводится к заполнению конфигурационного файла с описанием параметров DAGа и списком задач, которые должны выполняться. У нас в Леруа Мерлен такой подход успешно используется для создания задач по перекладыванию данных из raw-слоя в ods-слой хранилища. Поэтому было решено распространить его на задачи по заполнению витрин данных.