All streams
Search
Write a publication
Pull to refresh
4
0
Send message

LARM: как мультимодальные LLM меняют рекомендации для live-стриминга

Level of difficultyMedium
Reading time3 min
Views701

Рекомендательные системы уже давно стали привычной частью нашей жизни — от Netflix до YouTube и TikTok. Но есть один особый формат контента, где классические подходы начинают буксовать — живые трансляции (live-streaming).

Почему? В отличие от фильмов или статей, у стрима нет статичного описания или заранее известного контента. Всё меняется прямо на глазах — темы обсуждений, настроение аудитории, активность зрителей. Это делает задачу рекомендаций гораздо более динамичной и сложной.

Недавно вышла статья “LLM-Alignment Live-Streaming Recommendation” (arXiv: 2504.05217), где авторы предлагают новую архитектуру LARM (LLM-Alignment for Live-Streaming Recommendation). Давайте разберёмся, что это такое и зачем нужно.

Читать далее

Semantic Retrieval-Augmented Contrastive Learning (SRA-CL) для sequential рекомендательных систем: обзор

Level of difficultyMedium
Reading time4 min
Views592

👋 Привет, Хабр!

Меня зовут Никита Горячев, я Research Engineer в WB, последние несколько лет работаю на стыке RecSys, LLM и мультимодальных моделей. Каждый день мы обрабатываем миллиарды событий, а модели, которые мы внедряем, напрямую влияют на CTR, удержание и конверсию, принося немало дополнительной выручки.

До этого я успел поработать в AI-стартапе в Palo Alto, где занимался голосовыми агентами (ASR/TTS), и в МТС, где мы строили AI-экосистему. Ранее в Сбере я занимался созданием единого RecSys SDK для всей экосистемы (от SberMegaMarket до Okko и Zvuk), а ещё раньше — развивал персонализацию и ML в ритейле и нейротехе.

Сегодня я хотел бы поговорить о том, как большие языковые модели могут починить контрастивное обучение в рекомендательных системах. Контрастивные методы давно стали стандартом в NLP и CV, но в последовательных рекомендациях они работают далеко не идеально: данные разрежены, а аугментации часто искажают смысл вместо того, чтобы его сохранять. Авторы свежей статьи с arXiv — “Semantic Retrieval Augmented Contrastive Learning for Sequential Recommendation (SRA-CL)” — предлагают элегантное решение: использовать LLM для генерации семантически осмысленных позитивных пар. Звучит просто, но даёт заметный прирост качества — давайте разберёмся, как именно это работает.

Читать далее

Я написал бесплатную книгу для профессионалов в области AI (и не только)

Level of difficultyHard
Reading time2 min
Views19K

Привет, Хабр! Меня зовут Никита Горячев, работаю в позиции AI/ML Engineer в Сбере. В мой скоуп входит работа с SOTA (state-of-the-art) алгоритмами в областях NLP и RecSys.

Книга написана в форме Guide Book с теоретическими и практическими заданиями. Ниже написал анонс в виде Q&A, чтобы вы на первых двух пунктах смогли понять, интересно ли вам.

Ссылка на книгу

Читать далее

Information

Rating
Does not participate
Registered
Activity

Specialization

Data Scientist, ML Engineer
Lead